Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(8): 2078-2086, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36799494

ABSTRACT

Deciphering the structural evolution in irreversibly densified oxide glasses is crucial for fabricating functional glasses with tunable properties and elucidating the nature of pressure-induced anomalous plastic deformation in glasses. High-resolution NMR spectroscopy quantifies atomic-level structural information on densified glasses; however, its application is limited to the low-pressure range due to technical challenges. Here, we report the first high-resolution NMR spectra of oxide glass compressed by diamond anvil cells at room temperature, extending the pressure record of such studies from 24 to 65 GPa. The results constrain the densification path through coordination transformation of Al cations. Based on a statistical thermodynamic model, the stepwise changes in the Al fractions of oxide glasses and the effects of network polymerization on the densification paths are quantified. These results extend the knowledge on densification of the previously unattainable pressure conditions and contribute to understanding the origin of mechanical strengthening of the glasses.

2.
J Phys Chem Lett ; 12(4): 1330-1338, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33502857

ABSTRACT

Densification in glassy networks has traditionally been described in terms of short-range structures, such as how atoms are coordinated and how the coordination polyhedron is linked in the second coordination environment. While changes in medium-range structures beyond the second coordination shells may play an important role, experimental verification of the densification beyond short-range structures is among the remaining challenges in the physical sciences. Here, a correlation NMR experiment for prototypical borate glasses under compression up to 9 GPa offers insights into the pressure-induced evolution of proximity among cations on a medium-range scale. Whereas amorphous networks at ambient pressure may favor the formation of medium-range clusters consisting primarily of similar coordination species, such segregation between distinct coordination environments tends to decrease with increasing pressure, promoting a more homogeneous distribution of dissimilar structural units. Together with an increase in the average coordination number, densification of glass accompanies a preferential rearrangement toward a random distribution, which may increase the configurational entropy. The results highlight the direct link between the pressure-induced increase in medium-range disorder and the densification of glasses under extreme compression.

3.
Proc Natl Acad Sci U S A ; 117(36): 21938-21944, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32839310

ABSTRACT

Although geophysical observations of mantle regions that suggest the presence of partial melt have often been interpreted in light of the properties of basaltic liquids erupted at the surface, the seismic and rheological consequences of partial melting in the upper mantle depend instead on the properties of interstitial basaltic melt at elevated pressure. In particular, basaltic melts and glasses display anomalous mechanical softening upon compression up to several GPa, suggesting that the relevant properties of melt are strongly pressure-dependent. A full understanding of such a softening requires study, under compression, of the atomic structure of primitive small-degree basaltic melts at their formation depth, which has proven to be difficult. Here we report multiNMR spectra for a simplified basaltic glass quenched at pressures up to 5 GPa (corresponding to depths down to ∼150 km). These data allow quantification of short-range structural parameters such as the populations of coordination numbers of Al and Si cations and the cation pairs bonded to oxygen atoms. In the model basaltic glass, the fraction of [5,6]Al is ∼40% at 5 GPa and decreases to ∼3% at 1 atm. The estimated fraction of nonbridging oxygens at 5 GPa is ∼84% of that at ambient pressure. Together with data on variable glass compositions at 1 atm, these results allow us to quantify how such structural changes increase the configurational entropy of melts with increasing density. We explore how configurational entropy can be used to explain the anomalous mechanical softening of basaltic melts and glasses.

SELECTION OF CITATIONS
SEARCH DETAIL
...