Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Eur Heart J Cardiovasc Imaging ; 24(10): 1363-1373, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37699069

ABSTRACT

AIMS: Left ventricular systolic dysfunction (LSVD) is a heterogeneous condition with several factors influencing prognosis. Better phenotyping of asymptomatic individuals can inform preventative strategies. This study aims to explore the clinical phenotypes of LVSD in initially asymptomatic subjects and their association with clinical outcomes and cardiovascular abnormalities through multi-dimensional data clustering. METHODS AND RESULTS: Clustering analysis was performed on 60 clinically available variables from 1563 UK Biobank participants without pre-existing heart failure (HF) and with left ventricular ejection fraction (LVEF) < 50% on cardiovascular magnetic resonance (CMR) assessment. Risks of developing HF, other cardiovascular events, death, and a composite of major adverse cardiovascular events (MACE) associated with clusters were investigated. Cardiovascular imaging characteristics, not included in the clustering analysis, were also evaluated. Three distinct clusters were identified, differing considerably in lifestyle habits, cardiovascular risk factors, electrocardiographic parameters, and cardiometabolic profiles. A stepwise increase in risk profile was observed from Cluster 1 to Cluster 3, independent of traditional risk factors and LVEF. Compared with Cluster 1, the lowest risk subset, the risk of MACE ranged from 1.42 [95% confidence interval (CI): 1.03-1.96; P < 0.05] for Cluster 2 to 1.72 (95% CI: 1.36-2.35; P < 0.001) for Cluster 3. Cluster 3, the highest risk profile, had features of adverse cardiovascular imaging with the greatest LV re-modelling, myocardial dysfunction, and decrease in arterial compliance. CONCLUSIONS: Clustering of clinical variables identified three distinct risk profiles and clinical trajectories of LVSD amongst initially asymptomatic subjects. Improved characterization may facilitate tailored interventions based on the LVSD sub-type and improve clinical outcomes.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Humans , Ventricular Function, Left , Stroke Volume , Risk Factors , Prognosis , Risk Assessment
2.
Front Cardiovasc Med ; 9: 1016032, 2022.
Article in English | MEDLINE | ID: mdl-36426221

ABSTRACT

A growing number of artificial intelligence (AI)-based systems are being proposed and developed in cardiology, driven by the increasing need to deal with the vast amount of clinical and imaging data with the ultimate aim of advancing patient care, diagnosis and prognostication. However, there is a critical gap between the development and clinical deployment of AI tools. A key consideration for implementing AI tools into real-life clinical practice is their "trustworthiness" by end-users. Namely, we must ensure that AI systems can be trusted and adopted by all parties involved, including clinicians and patients. Here we provide a summary of the concepts involved in developing a "trustworthy AI system." We describe the main risks of AI applications and potential mitigation techniques for the wider application of these promising techniques in the context of cardiovascular imaging. Finally, we show why trustworthy AI concepts are important governing forces of AI development.

3.
Front Cardiovasc Med ; 9: 894503, 2022.
Article in English | MEDLINE | ID: mdl-36051279

ABSTRACT

Objectives: Currently, administering contrast agents is necessary for accurately visualizing and quantifying presence, location, and extent of myocardial infarction (MI) with cardiac magnetic resonance (CMR). In this study, our objective is to investigate and analyze pre- and post-contrast CMR images with the goal of predicting post-contrast information using pre-contrast information only. We propose methods and identify challenges. Methods: The study population consists of 272 retrospectively selected CMR studies with diagnoses of MI (n = 108) and healthy controls (n = 164). We describe a pipeline for pre-processing this dataset for analysis. After data feature engineering, 722 cine short-axis (SAX) images and segmentation mask pairs were used for experimentation. This constitutes 506, 108, and 108 pairs for the training, validation, and testing sets, respectively. We use deep learning (DL) segmentation (UNet) and classification (ResNet50) models to discover the extent and location of the scar and classify between the ischemic cases and healthy cases (i.e., cases with no regional myocardial scar) from the pre-contrast cine SAX image frames, respectively. We then capture complex data patterns that represent subtle signal and functional changes in the cine SAX images due to MI using optical flow, rate of change of myocardial area, and radiomics data. We apply this dataset to explore two supervised learning methods, namely, the support vector machines (SVM) and the decision tree (DT) methods, to develop predictive models for classifying pre-contrast cine SAX images as being a case of MI or healthy. Results: Overall, for the UNet segmentation model, the performance based on the mean Dice score for the test set (n = 108) is 0.75 (±0.20) for the endocardium, 0.51 (±0.21) for the epicardium and 0.20 (±0.17) for the scar. For the classification task, the accuracy, F1 and precision scores of 0.68, 0.69, and 0.64, respectively, were achieved with the SVM model, and of 0.62, 0.63, and 0.72, respectively, with the DT model. Conclusion: We have presented some promising approaches involving DL, SVM, and DT methods in an attempt to accurately predict contrast information from non-contrast images. While our initial results are modest for this challenging task, this area of research still poses several open problems.

4.
Clin Genitourin Cancer ; 20(6): 515-523, 2022 12.
Article in English | MEDLINE | ID: mdl-35871039

ABSTRACT

INTRODUCTION: The homologous recombination repair (HRR) pathway is a frequently mutated pathway in advanced prostate cancer. The clinical course of patients with HRR gene alterations who have metastatic hormone sensitive prostate cancer (mHSPC) has not been fully characterized. Here, we examine the outcomes of men with mHSPC with HRR alterations. METHODS: We conducted a single-center retrospective analysis of men with mHSPC who underwent next generation sequencing. The primary objective was to assess the time from diagnosis of mHSPC to metastatic castrate resistance prostate cancer (mCRPC) in patients with pathogenic HRR alterations compared to individuals lacking these alterations. Key secondary objectives included time to mCRPC in prespecified cohorts, PSA response, and overall survival. RESULTS: 151 men with mHSPC were identified for the study. 24% (N = 37) had pathogenic HRR gene alterations detected with the most common alterations found in BRCA2 (n = 15), ATM (n = 10), and CDK12 (n = 7). Time to mCRPC was significantly decreased in patients with HRR gene alterations versus those without such alterations (12.7 vs. 16.1 months, HR 1.95, P = .02). In multivariate analysis, the effect of HRR gene alterations on time to CRPC remained significant when adjusting for age, mHSPC therapy, the volume of disease, the presence of visceral metastases, and PSA (adjusted HR 1.69, P = .02). Stratified by specific HRR gene alteration, patients with BRCA2 or CDK12 had significantly decreased time to mCRPC compared to other HRR alterations. CONCLUSION: HRR gene alterations are associated with the worse outcomes in mHSPC with significantly shorter time to mCRPC. Given the established role of Poly (ADP-ribose) Polymerase (PARP) inhibitors in mCRPC, these data highlight an opportunity to examine PARP inhibitors earlier in the clinical course for prostate cancer patients. Ongoing prospective studies will further validate the role of PARP inhibitors in mHSPC patients.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prognosis , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prostate-Specific Antigen , Retrospective Studies , Recombinational DNA Repair/genetics , Prospective Studies , Hormones
5.
Case Rep Hematol ; 2022: 2802680, 2022.
Article in English | MEDLINE | ID: mdl-35515507

ABSTRACT

Acute myeloid leukemia (AML) is associated with particularly poor outcomes in the elderly population, in whom the disease is most prevalent. BCL-2 has been identified as an antiapoptotic protein and promotes survival of leukemia stem cells. Recently, the United States FDA has approved venetoclax, a selective oral BCL-2 inhibitor, for use in conjunction with hypomethylating agents (azacitidine or decitabine) or low-dose cytarabine as a first-line treatment option for those AML patients ineligible for standard induction chemotherapy. However, there are nuances and challenges when using this regimen in the extremely elderly AML patients. Given the widespread adoption of this regimen and increasing prevalence of patients who are well into their 80 s, it is important to evaluate and understand how to safely use this regimen in this so-called "extremely elderly" population. We present here 3 case studies involving AML patients >85 years of age who were treated with venetoclax plus HMA and provide clinical knowledge on how this population should be appropriately managed.

6.
Front Cardiovasc Med ; 9: 822269, 2022.
Article in English | MEDLINE | ID: mdl-35155637

ABSTRACT

OBJECTIVES: Cardiac computed tomography (CCT) is a common pre-operative imaging modality to evaluate pulmonary vein anatomy and left atrial appendage thrombus in patients undergoing catheter ablation (CA) for atrial fibrillation (AF). These images also allow for full volumetric left atrium (LA) measurement for recurrence risk stratification, as larger LA volume (LAV) is associated with higher recurrence rates. Our objective is to apply deep learning (DL) techniques to fully automate the computation of LAV and assess the quality of the computed LAV values. METHODS: Using a dataset of 85,477 CCT images from 337 patients, we proposed a framework that consists of several processes that perform a combination of tasks including the selection of images with LA from all other images using a ResNet50 classification model, the segmentation of images with LA using a UNet image segmentation model, the assessment of the quality of the image segmentation task, the estimation of LAV, and quality control (QC) assessment. RESULTS: Overall, the proposed LAV estimation framework achieved accuracies of 98% (precision, recall, and F1 score metrics) in the image classification task, 88.5% (mean dice score) in the image segmentation task, 82% (mean dice score) in the segmentation quality prediction task, and R 2 (the coefficient of determination) value of 0.968 in the volume estimation task. It correctly identified 9 out of 10 poor LAV estimations from a total of 337 patients as poor-quality estimates. CONCLUSIONS: We proposed a generalizable framework that consists of DL models and computational methods for LAV estimation. The framework provides an efficient and robust strategy for QC assessment of the accuracy for DL-based image segmentation and volume estimation tasks, allowing high-throughput extraction of reproducible LAV measurements to be possible.

7.
Sci Rep ; 12(1): 2391, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165324

ABSTRACT

Although having been the subject of intense research over the years, cardiac function quantification from MRI is still not a fully automatic process in the clinical practice. This is partly due to the shortage of training data covering all relevant cardiovascular disease phenotypes. We propose to synthetically generate short axis CINE MRI using a generative adversarial model to expand the available data sets that consist of predominantly healthy subjects to include more cases with reduced ejection fraction. We introduce a deep learning convolutional neural network (CNN) to predict the end-diastolic volume, end-systolic volume, and implicitly the ejection fraction from cardiac MRI without explicit segmentation. The left ventricle volume predictions were compared to the ground truth values, showing superior accuracy compared to state-of-the-art segmentation methods. We show that using synthetic data generated for pre-training a CNN significantly improves the prediction compared to only using the limited amount of available data, when the training set is imbalanced.


Subject(s)
Deep Learning , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging, Cine , Neural Networks, Computer , Stroke Volume , Ventricular Function, Left
8.
Medicina (Kaunas) ; 57(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072775

ABSTRACT

Background and Objectives: Obstructive sleep apnea (OSA) is a common disorder with an increased risk for left ventricular and right ventricular dysfunction. Most studies to date have examined populations with manifest cardiovascular disease using echocardiography to analyze ventricular dysfunction with little or no reference to ventricular volumes or myocardial mass. Our aim was to explore these parameters with cardiac MRI. We hypothesized that there would be stepwise increase in left ventricular mass and right ventricular volumes from the unaffected, to the snoring and the OSA group. Materials and Methods: We analyzed cardiac MRI data from 4978 UK Biobank participants free from cardiovascular disease. Participants were allocated into three cohorts: with OSA, with self-reported snoring and without OSA or snoring (n = 118, 1886 and 2477). We analyzed cardiac parameters from balanced cine-SSFP sequences and indexed them to body surface area. Results: Patients with OSA were mostly males (47.3% vs. 79.7%; p < 0.001) with higher body mass index (25.7 ± 4.0 vs. 31.3 ± 5.3 kg/m²; p < 0.001) and higher blood pressure (135 ± 18 vs. 140 ± 17 mmHg; p = 0.012) compared to individuals without OSA or snoring. Regression analysis showed a significant effect for OSA in left ventricular end-diastolic index (LVEDVI) (ß = -4.9 ± 2.4 mL/m²; p = 0.040) and right ventricular end-diastolic index (RVEDVI) (ß = -6.2 ± 2.6 mL/m²; p = 0.016) in females and for right ventricular ejection fraction (RVEF) (ß = 1.7 ± 0.8%; p = 0.031) in males. A significant effect was discovered in snoring females for left ventricular mass index (LVMI) (ß = 3.5 ± 0.9 g/m²; p < 0.001) and in males for left ventricular ejection fraction (LVEF) (ß = 1.0 ± 0.3%; p = 0.001) and RVEF (ß = 1.2 ± 0.3%; p < 0.001). Conclusion: Our study suggests that OSA is highly underdiagnosed and that it is an evolving process with gender specific progression. Females with OSA show significantly lower ventricular volumes while males with snoring show increased ejection fractions which may be an early sign of hypertrophy. Separate prospective studies are needed to further explore the direction of causality.


Subject(s)
Biological Specimen Banks , Snoring , Female , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Prospective Studies , Snoring/diagnostic imaging , Stroke Volume , United Kingdom , Ventricular Function, Left , Ventricular Function, Right
9.
Eur Heart J Cardiovasc Imaging ; 22(9): 1009-1016, 2021 08 14.
Article in English | MEDLINE | ID: mdl-33313691

ABSTRACT

AIMS: Data regarding the effects of regular alcohol consumption on cardiac anatomy and function are scarce. Therefore, we sought to determine the relationship between regular alcohol intake and cardiac structure and function as evaluated with cardiac magnetic resonance imaging. METHODS AND RESULTS: Participants of the UK Biobank who underwent cardiac magnetic resonance were enrolled in our analysis. Data regarding regular alcohol consumption were obtained from questionnaires filled in by the study participants. Exclusion criteria were poor image quality, missing, or incongruent data regarding alcohol drinking habits, prior drinking, presence of heart failure or angina, and prior myocardial infarction or stroke. Overall, 4335 participants (61.5 ± 7.5 years, 47.6% male) were analysed. We used multivariate linear regression models adjusted for age, ethnicity, body mass index, smoking, hypertension, diabetes mellitus, physical activity, cholesterol level, and Townsend deprivation index to examine the relationship between regular alcohol intake and cardiac structure and function. In men, alcohol intake was independently associated with marginally increased left ventricular end-diastolic volume [ß = 0.14; 95% confidence interval (CI) = 0.05-0.24; P = 0.004], left ventricular stroke volume (ß = 0.08; 95% CI = 0.03-0.14; P = 0.005), and right ventricular stroke volume (ß = 0.08; 95% CI = 0.02-0.13; P = 0.006). In women, alcohol consumption was associated with increased left atrium volume (ß = 0.14; 95% CI = 0.04-0.23; P = 0.006). CONCLUSION: Alcohol consumption is independently associated with a marginal increase in left and right ventricular volumes in men, but not in women, whereas alcohol intake showed an association with increased left atrium volume in women. Our results suggest that there is only minimal relationship between regular alcohol consumption and cardiac morphology and function in an asymptomatic middle-aged population.


Subject(s)
Biological Specimen Banks , Magnetic Resonance Imaging , Alcohol Drinking/epidemiology , Female , Heart Atria/diagnostic imaging , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged , Stroke Volume , United Kingdom/epidemiology , Ventricular Function, Left
10.
J Bone Miner Res ; 36(1): 90-99, 2021 01.
Article in English | MEDLINE | ID: mdl-32964541

ABSTRACT

Osteoporosis and ischemic heart disease (IHD) represent important public health problems. Existing research suggests an association between the two conditions beyond that attributable to shared risk factors, with a potentially causal relationship. In this study, we tested the association of bone speed of sound (SOS) from quantitative heel ultrasound with (i) measures of arterial compliance from cardiovascular magnetic resonance (aortic distensibility [AD]); (ii) finger photoplethysmography (arterial stiffness index [ASI]); and (iii) incident myocardial infarction and IHD mortality in the UK Biobank cohort. We considered the potential mediating effect of a range of blood biomarkers and cardiometabolic morbidities and evaluated differential relationships by sex, menopause status, smoking, diabetes, and obesity. Furthermore, we considered whether associations with arterial compliance explained association of SOS with ischemic cardiovascular outcomes. Higher SOS was associated with lower arterial compliance by both ASI and AD for both men and women. The relationship was most consistent with ASI, likely relating to larger sample size available for this variable (n = 159,542 versus n = 18,229). There was no clear evidence of differential relationship by menopause, smoking, diabetes, or body mass index (BMI). Blood biomarkers appeared important in mediating the association for both men and women, but with different directions of effect and did not fully explain the observed effects. In fully adjusted models, higher SOS was associated with significantly lower IHD mortality in men, but less robustly in women. The association of SOS with ASI did not explain this observation. In conclusion, our findings support a positive association between bone and vascular health with consistent patterns of association in men and women. The underlying mechanisms are complex and appear to vary by sex. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Vascular Stiffness , Biological Specimen Banks , Female , Humans , Male , Risk Factors , Ultrasonography , United Kingdom/epidemiology
11.
Front Cardiovasc Med ; 7: 105, 2020.
Article in English | MEDLINE | ID: mdl-32714943

ABSTRACT

Background: Convolutional neural network (CNN) based segmentation methods provide an efficient and automated way for clinicians to assess the structure and function of the heart in cardiac MR images. While CNNs can generally perform the segmentation tasks with high accuracy when training and test images come from the same domain (e.g., same scanner or site), their performance often degrades dramatically on images from different scanners or clinical sites. Methods: We propose a simple yet effective way for improving the network generalization ability by carefully designing data normalization and augmentation strategies to accommodate common scenarios in multi-site, multi-scanner clinical imaging data sets. We demonstrate that a neural network trained on a single-site single-scanner dataset from the UK Biobank can be successfully applied to segmenting cardiac MR images across different sites and different scanners without substantial loss of accuracy. Specifically, the method was trained on a large set of 3,975 subjects from the UK Biobank. It was then directly tested on 600 different subjects from the UK Biobank for intra-domain testing and two other sets for cross-domain testing: the ACDC dataset (100 subjects, 1 site, 2 scanners) and the BSCMR-AS dataset (599 subjects, 6 sites, 9 scanners). Results: The proposed method produces promising segmentation results on the UK Biobank test set which are comparable to previously reported values in the literature, while also performing well on cross-domain test sets, achieving a mean Dice metric of 0.90 for the left ventricle, 0.81 for the myocardium, and 0.82 for the right ventricle on the ACDC dataset; and 0.89 for the left ventricle, 0.83 for the myocardium on the BSCMR-AS dataset. Conclusions: The proposed method offers a potential solution to improve CNN-based model generalizability for the cross-scanner and cross-site cardiac MR image segmentation task.

12.
J Cardiovasc Magn Reson ; 23(1): 5, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33407573

ABSTRACT

BACKGROUND: Mitral valve (MV) and tricuspid valve (TV) apparatus geometry are essential to define mechanisms and etiologies of regurgitation and to inform surgical or transcatheter interventions. Given the increasing use of cardiovascular magnetic resonance (CMR) for the evaluation of valvular heart disease, we aimed to establish CMR-derived age- and sex-specific reference values for mitral annular (MA) and tricuspid annular (TA) dimensions and tethering indices derived from truly healthy Caucasian adults. METHODS: 5065 consecutive UK Biobank participants underwent CMR using cine balanced steady-state free precession imaging at 1.5 T. Participants with non-Caucasian ethnicity, prevalent cardiovascular disease and other conditions known to affect cardiac chamber size and function were excluded. Absolute and indexed reference ranges for MA and TA diameters and tethering indices were stratified by gender and age (45-54, 55-64, 65-74 years). RESULTS: Overall, 721 (14.2%) truly healthy participants aged 45-74 years (54% women) formed the reference cohort. Absolute MA and TA diameters, MV tenting length and MV tenting area, were significantly larger in men. Mean ± standard deviation (SD) end-diastolic and end-systolic MA diameters in the 3-chamber view (anteroposterior diameter) were 2.9 ± 0.4 cm (1.5 ± 0.2 cm/m2) and 3.3 ± 0.4 cm (1.7 ± 0.2 cm/m2) in men, and 2.6 ± 0.4 cm (1.6 ± 0.2 cm/m2) and 3.0 ± 0.4 cm (1.8 ± 0.2 cm/m2) in women, respectively. Mean ± SD end-diastolic and end-systolic TA diameters in the 4-chamber view were 3.2 ± 0.5 cm (1.6 ± 0.3 cm/m2) and 3.2 ± 0.5 cm (1.7 ± 0.3 cm/m2) in men, and 2.9 ± 0.4 cm (1.7 ± 0.2 cm/m2) and 2.8 ± 0.4 cm (1.7 ± 0.3 cm/m2) in women, respectively. With advancing age, end-diastolic TA diameter became larger and posterior MV leaflet angle smaller in both sexes. Reproducibility of measurements was good to excellent with an inter-rater intraclass correlation coefficient (ICC) between 0.92 and 0.98 and an intra-rater ICC between 0.90 and 0.97. CONCLUSIONS: We described age- and sex-specific reference ranges of MA and TA dimensions and tethering indices in the largest validated healthy Caucasian population. Reference ranges presented in this study may help to improve the distinction between normal and pathological states, prompting the identification of subjects that may benefit from advanced cardiac imaging for annular sizing and planning of valvular interventions.


Subject(s)
Magnetic Resonance Imaging, Cine , Mitral Valve/diagnostic imaging , Tricuspid Valve/diagnostic imaging , Age Factors , Aged , Cross-Sectional Studies , Female , Healthy Volunteers , Humans , Male , Middle Aged , Observer Variation , Predictive Value of Tests , Reference Values , Reproducibility of Results , Sex Factors , United Kingdom , White People
14.
Circ Cardiovasc Imaging ; 12(9): e009476, 2019 09.
Article in English | MEDLINE | ID: mdl-31522551

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is associated with increased risk of cardiovascular disease. Detection of early cardiac changes before manifest disease develops is important. We investigated early alterations in cardiac structure and function associated with DM using cardiovascular magnetic resonance imaging. METHODS: Participants from the UK Biobank Cardiovascular Magnetic Resonance Substudy, a community cohort study, without known cardiovascular disease and left ventricular ejection fraction ≥50% were included. Multivariable linear regression models were performed. The investigators were blinded to DM status. RESULTS: A total of 3984 individuals, 45% men, (mean [SD]) age 61.3 (7.5) years, hereof 143 individuals (3.6%) with DM. There was no difference in left ventricular (LV) ejection fraction (DM versus no DM; coefficient [95% CI]: -0.86% [-1.8 to 0.5]; P=0.065), LV mass (-0.13 g/m2 [-1.6 to 1.3], P=0.86), or right ventricular ejection fraction (-0.23% [-1.2 to 0.8], P=0.65). However, both LV and right ventricular volumes were significantly smaller in DM, (LV end-diastolic volume/m2: -3.46 mL/m2 [-5.8 to -1.2], P=0.003, right ventricular end-diastolic volume/m2: -4.2 mL/m2 [-6.8 to -1.7], P=0.001, LV stroke volume/m2: -3.0 mL/m2 [-4.5 to -1.5], P<0.001; right ventricular stroke volume/m2: -3.8 mL/m2 [-6.5 to -1.1], P=0.005), LV mass/volume: 0.026 (0.01 to 0.04) g/mL, P=0.006. Both left atrial and right atrial emptying fraction were lower in DM (right atrial emptying fraction: -6.2% [-10.2 to -2.1], P=0.003; left atrial emptying fraction:-3.5% [-6.9 to -0.1], P=0.043). LV global circumferential strain was impaired in DM (coefficient [95% CI]: 0.38% [0.01 to 0.7], P=0.045). CONCLUSIONS: In a low-risk general population without known cardiovascular disease and with preserved LV ejection fraction, DM is associated with early changes in all 4 cardiac chambers. These findings suggest that diabetic cardiomyopathy is not a regional condition of the LV but affects the heart globally.


Subject(s)
Diabetic Cardiomyopathies/diagnostic imaging , Diabetic Cardiomyopathies/physiopathology , Magnetic Resonance Imaging, Cine/methods , Adult , Aged , Comorbidity , Female , Heart Function Tests , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Stroke Volume , United Kingdom
15.
J Cardiovasc Magn Reson ; 21(1): 41, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31315625

ABSTRACT

BACKGROUND: The associations between cardiovascular disease (CVD) risk factors and the biventricular geometry of the right ventricle (RV) and left ventricle (LV) have been difficult to assess, due to subtle and complex shape changes. We sought to quantify reference RV morphology as well as biventricular variations associated with common cardiovascular risk factors. METHODS: A biventricular shape atlas was automatically constructed using contours and landmarks from 4329 UK Biobank cardiovascular magnetic resonance (CMR) studies. A subdivision surface geometric mesh was customized to the contours using a diffeomorphic registration algorithm, with automatic correction of slice shifts due to differences in breath-hold position. A reference sub-cohort was identified consisting of 630 participants with no CVD risk factors. Morphometric scores were computed using linear regression to quantify shape variations associated with four risk factors (high cholesterol, high blood pressure, obesity and smoking) and three disease factors (diabetes, previous myocardial infarction and angina). RESULTS: The atlas construction led to an accurate representation of 3D shapes at end-diastole and end-systole, with acceptable fitting errors between surfaces and contours (average error less than 1.5 mm). Atlas shape features had stronger associations than traditional mass and volume measures for all factors (p < 0.005 for each). High blood pressure was associated with outward displacement of the LV free walls, but inward displacement of the RV free wall and thickening of the septum. Smoking was associated with a rounder RV with inward displacement of the RV free wall and increased relative wall thickness. CONCLUSION: Morphometric relationships between biventricular shape and cardiovascular risk factors in a large cohort show complex interactions between RV and LV morphology. These can be quantified by z-scores, which can be used to study the morphological correlates of disease.


Subject(s)
Cardiovascular Diseases/diagnostic imaging , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine/standards , Ventricular Function, Left , Ventricular Function, Right , Ventricular Remodeling , Aged , Anatomic Landmarks , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/physiopathology , Female , Heart Ventricles/physiopathology , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Predictive Value of Tests , Reference Values , Reproducibility of Results , Risk Factors , United Kingdom/epidemiology
16.
Sci Rep ; 9(1): 9143, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235810

ABSTRACT

Arterial stiffness index (ASI) is a non-invasive measure of arterial stiffness using infra-red finger sensors (photoplethysmography). It is a well-suited measure for large populations as it is relatively inexpensive to perform, and data can be acquired within seconds. These features raise interest in using ASI as a tool to estimate cardiovascular disease risk as prior work demonstrates increased arterial stiffness is associated with elevated systolic blood pressure, and ASI is predictive of cardiovascular disease and mortality. We conducted genome-wide association studies (GWASs) for ASI in 127,121 UK Biobank participants of European-ancestry. Our primary analyses identified variants at four loci reaching genome-wide significance (P < 5 × 10-8): TEX41 (rs1006923; P = 5.3 × 10-12), FOXO1 (rs7331212; P = 2.2 × 10-11), C1orf21 (rs1930290, P = 1.1 × 10-8) and MRVI1 (rs10840457, P = 3.4 × 10-8). Gene-based testing revealed three significant genes, the most significant gene was COL4A2 (P = 1.41 × 10-8) encoding type IV collagen. Other candidate genes at associated loci were also involved in smooth muscle tone regulation. Our findings provide new information for understanding the development of arterial stiffness.


Subject(s)
Biological Specimen Banks , Genome-Wide Association Study , Vascular Stiffness/genetics , Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Humans , Polymorphism, Single Nucleotide , United Kingdom
17.
Med Image Anal ; 56: 26-42, 2019 08.
Article in English | MEDLINE | ID: mdl-31154149

ABSTRACT

Population imaging studies generate data for developing and implementing personalised health strategies to prevent, or more effectively treat disease. Large prospective epidemiological studies acquire imaging for pre-symptomatic populations. These studies enable the early discovery of alterations due to impending disease, and enable early identification of individuals at risk. Such studies pose new challenges requiring automatic image analysis. To date, few large-scale population-level cardiac imaging studies have been conducted. One such study stands out for its sheer size, careful implementation, and availability of top quality expert annotation; the UK Biobank (UKB). The resulting massive imaging datasets (targeting ca. 100,000 subjects) has put published approaches for cardiac image quantification to the test. In this paper, we present and evaluate a cardiac magnetic resonance (CMR) image analysis pipeline that properly scales up and can provide a fully automatic analysis of the UKB CMR study. Without manual user interactions, our pipeline performs end-to-end image analytics from multi-view cine CMR images all the way to anatomical and functional bi-ventricular quantification. All this, while maintaining relevant quality controls of the CMR input images, and resulting image segmentations. To the best of our knowledge, this is the first published attempt to fully automate the extraction of global and regional reference ranges of all key functional cardiovascular indexes, from both left and right cardiac ventricles, for a population of 20,000 subjects imaged at 50 time frames per subject, for a total of one million CMR volumes. In addition, our pipeline provides 3D anatomical bi-ventricular models of the heart. These models enable the extraction of detailed information of the morphodynamics of the two ventricles for subsequent association to genetic, omics, lifestyle habits, exposure information, and other information provided in population imaging studies. We validated our proposed CMR analytics pipeline against manual expert readings on a reference cohort of 4620 subjects with contour delineations and corresponding clinical indexes. Our results show broad significant agreement between the manually obtained reference indexes, and those automatically computed via our framework. 80.67% of subjects were processed with mean contour distance of less than 1 pixel, and 17.50% with mean contour distance between 1 and 2 pixels. Finally, we compare our pipeline with a recently published approach reporting on UKB data, and based on deep learning. Our comparison shows similar performance in terms of segmentation accuracy with respect to human experts.


Subject(s)
Heart Ventricles/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Models, Statistical , Neural Networks, Computer , Biological Specimen Banks , Female , Humans , Imaging, Three-Dimensional , Male , Pattern Recognition, Automated , United Kingdom
18.
J Cardiovasc Magn Reson ; 21(1): 18, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30866968

ABSTRACT

BACKGROUND: The trend towards large-scale studies including population imaging poses new challenges in terms of quality control (QC). This is a particular issue when automatic processing tools such as image segmentation methods are employed to derive quantitative measures or biomarkers for further analyses. Manual inspection and visual QC of each segmentation result is not feasible at large scale. However, it is important to be able to automatically detect when a segmentation method fails in order to avoid inclusion of wrong measurements into subsequent analyses which could otherwise lead to incorrect conclusions. METHODS: To overcome this challenge, we explore an approach for predicting segmentation quality based on Reverse Classification Accuracy, which enables us to discriminate between successful and failed segmentations on a per-cases basis. We validate this approach on a new, large-scale manually-annotated set of 4800 cardiovascular magnetic resonance (CMR) scans. We then apply our method to a large cohort of 7250 CMR on which we have performed manual QC. RESULTS: We report results used for predicting segmentation quality metrics including Dice Similarity Coefficient (DSC) and surface-distance measures. As initial validation, we present data for 400 scans demonstrating 99% accuracy for classifying low and high quality segmentations using the predicted DSC scores. As further validation we show high correlation between real and predicted scores and 95% classification accuracy on 4800 scans for which manual segmentations were available. We mimic real-world application of the method on 7250 CMR where we show good agreement between predicted quality metrics and manual visual QC scores. CONCLUSIONS: We show that Reverse classification accuracy has the potential for accurate and fully automatic segmentation QC on a per-case basis in the context of large-scale population imaging as in the UK Biobank Imaging Study.


Subject(s)
Heart/diagnostic imaging , Image Interpretation, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Automation , Humans , Predictive Value of Tests , Quality Control , Reproducibility of Results , United Kingdom
19.
Sci Rep ; 9(1): 1130, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718635

ABSTRACT

Left ventricular (LV) mass and volume are important indicators of clinical and pre-clinical disease processes. However, much of the shape information present in modern imaging examinations is currently ignored. Morphometric atlases enable precise quantification of shape and function, but there has been no objective comparison of different atlases in the same cohort. We compared two independent LV atlases using MRI scans of 4547 UK Biobank participants: (i) a volume atlas derived by automatic non-rigid registration of image volumes to a common template, and (ii) a surface atlas derived from manually drawn epicardial and endocardial surface contours. The strength of associations between atlas principal components and cardiovascular risk factors (smoking, diabetes, high blood pressure, high cholesterol and angina) were quantified with logistic regression models and five-fold cross validation, using area under the ROC curve (AUC) and Akaike Information Criterion (AIC) metrics. Both atlases exhibited similar principal components, showed similar relationships with risk factors, and had stronger associations (higher AUC and lower AIC) than a reference model based on LV mass and volume, for all risk factors (DeLong p < 0.05). Morphometric variations associated with each risk factor could be quantified and visualized and were similar between atlases. UK Biobank LV shape atlases are robust to construction method and show stronger relationships with cardiovascular risk factors than mass and volume.


Subject(s)
Cardiovascular Diseases/diagnostic imaging , Heart Ventricles/anatomy & histology , Aged , Anatomy, Artistic , Atlases as Topic , Biological Specimen Banks , Female , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Humans , Logistic Models , Magnetic Resonance Imaging , Male , Middle Aged , United Kingdom , Ventricular Function, Left
20.
Circulation ; 138(20): 2175-2186, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30524134

ABSTRACT

Background: Exposure to ambient air pollution is strongly associated with increased cardiovascular morbidity and mortality. Little is known about the influence of air pollutants on cardiac structure and function. We aim to investigate the relationship between chronic past exposure to traffic-related pollutants and the cardiac chamber volume, ejection fraction, and left ventricular remodeling patterns after accounting for potential confounders. Methods: Exposure to ambient air pollutants including particulate matter and nitrogen dioxide was estimated from the Land Use Regression models for the years between 2005 and 2010. Cardiac parameters were measured from cardiovascular magnetic resonance imaging studies of 3920 individuals free from pre-existing cardiovascular disease in the UK Biobank population study. The median (interquartile range) duration between the year of exposure estimate and the imaging visit was 5.2 (0.6) years. We fitted multivariable linear regression models to investigate the relationship between cardiac parameters and traffic-related pollutants after adjusting for various confounders. Results: The studied cohort was 62±7 years old, and 46% were men. In fully adjusted models, particulate matter with an aerodynamic diameter <2.5 µm concentration was significantly associated with larger left ventricular end-diastolic volume and end-systolic volume (effect size = 0.82%, 95% CI, 0.09-1.55%, P=0.027; and effect size = 1.28%, 95% CI, 0.15-2.43%, P=0.027, respectively, per interquartile range increment in particulate matter with an aerodynamic diameter <2.5 µm) and right ventricular end-diastolic volume (effect size = 0.85%, 95% CI, 0.12-1.58%, P=0.023, per interquartile range increment in particulate matter with an aerodynamic diameter <2.5 µm). Likewise, higher nitrogen dioxide concentration was associated with larger biventricular volume. Distance from the major roads was the only metric associated with lower left ventricular mass (effect size = -0.74%, 95% CI, -1.3% to -0.18%, P=0.01, per interquartile range increment). Neither left and right atrial phenotypes nor left ventricular geometric remodeling patterns were influenced by the ambient pollutants. Conclusions: In a large asymptomatic population with no prevalent cardiovascular disease, higher past exposure to particulate matter with an aerodynamic diameter <2.5 µm and nitrogen dioxide was associated with cardiac ventricular dilatation, a marker of adverse remodeling that often precedes heart failure development.


Subject(s)
Air Pollutants/chemistry , Cardiovascular Diseases/diagnosis , Aged , Air Pollutants/toxicity , Biological Specimen Banks , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/etiology , Cardiovascular Diseases/physiopathology , Cross-Sectional Studies , Databases, Factual , Environmental Exposure , Female , Humans , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Nitrogen Oxides/analysis , Particulate Matter/toxicity , Phenotype , United Kingdom , Ventricular Function, Left/physiology , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...