Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Neuroreport ; 22(3): 101-5, 2011 Feb 16.
Article in English | MEDLINE | ID: mdl-21233781

ABSTRACT

We analyzed brain MRI data from 372 young adult twins to identify cortical regions in which gray matter thickness and volume are influenced by genetics. This was achieved using an A/C/E structural equation model that divides the variance of these traits, at each point on the cortex, into additive genetic (A), shared (C), and unique environmental (E) components. A strong genetic influence was found in frontal and parietal regions. In addition, we correlated cortical thickness with full-scale intelligence quotient for comparison with the A/C/E maps, and several regions where cortical structure was correlated with intelligence quotient are under genetic control. These cortical measures may be useful phenotypes to narrow the search for quantitative trait loci influencing brain structure.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/growth & development , Gene Expression Regulation, Developmental/genetics , Magnetic Resonance Imaging/methods , Models, Genetic , Quantitative Trait Loci/genetics , Adult , Cerebral Cortex/embryology , Female , Humans , Male , Reaction Time/genetics , Young Adult
2.
IEEE Trans Med Imaging ; 30(2): 184-202, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20813636

ABSTRACT

In this paper, we used a nonconservative Lagrangian mechanics approach to formulate a new statistical algorithm for fluid registration of 3-D brain images. This algorithm is named SAFIRA, acronym for statistically-assisted fluid image registration algorithm. A nonstatistical version of this algorithm was implemented , where the deformation was regularized by penalizing deviations from a zero rate of strain. In , the terms regularizing the deformation included the covariance of the deformation matrices (Σ) and the vector fields (q) . Here, we used a Lagrangian framework to reformulate this algorithm, showing that the regularizing terms essentially allow nonconservative work to occur during the flow. Given 3-D brain images from a group of subjects, vector fields and their corresponding deformation matrices are computed in a first round of registrations using the nonstatistical implementation. Covariance matrices for both the deformation matrices and the vector fields are then obtained and incorporated (separately or jointly) in the nonconservative terms, creating four versions of SAFIRA. We evaluated and compared our algorithms' performance on 92 3-D brain scans from healthy monozygotic and dizygotic twins; 2-D validations are also shown for corpus callosum shapes delineated at midline in the same subjects. After preliminary tests to demonstrate each method, we compared their detection power using tensor-based morphometry (TBM), a technique to analyze local volumetric differences in brain structure. We compared the accuracy of each algorithm variant using various statistical metrics derived from the images and deformation fields. All these tests were also run with a traditional fluid method, which has been quite widely used in TBM studies. The versions incorporating vector-based empirical statistics on brain variation were consistently more accurate than their counterparts, when used for automated volumetric quantification in new brain images. This suggests the advantages of this approach for large-scale neuroimaging studies.


Subject(s)
Brain/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adult , Algorithms , Brain/anatomy & histology , Female , Humans , Male , Reproducibility of Results , Twins
3.
J Psychiatr Res ; 45(3): 322-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20817203

ABSTRACT

The primary objective of the current prospective study was to examine developmental patterns of voxel-by-voxel gray and white matter volumes (GMV, WMV, respectively) that would predict psychosis in adolescents with 22q11.2 deletion syndrome (22q11.2DS), the most common known genetic risk factor for schizophrenia. We performed a longitudinal voxel-based morphometry analysis using structural T1 MRI scans from 19 individuals with 22q11.2DS and 18 typically developing individuals. In 22q11.2DS, univariate analysis showed that greater reduction in left dorsal prefrontal cortical (dPFC) GMV over time predicted greater psychotic symptoms at Time2. This dPFC region also showed significantly reduced volumes in 22q11.2DS compared to typically developing individuals at Time1 and 2, greater reduction over time in 22q11.2DS COMT(Met) compared to COMT(Val), and greater reduction in those with greater decline in verbal IQ over time. Leave-one-out Multivariate pattern analysis results (MVPA) on the other hand, showed that patterns of GM and WM morphometric changes over time in regions including but not limited to the dPFC predicted risk for psychotic symptoms (94.7-100% accuracy) significantly better than using univariate analysis (63.1%). Additional predictive brain regions included medial PFC and dorsal cingulum. This longitudinal prospective study shows novel evidence of morphometric spatial patterns predicting the development of psychotic symptoms in 22q11.2DS, and further elucidates the abnormal maturational processes in 22q11.2DS. The use of neuroimaging using MVPA may hold promise to predict outcome in a variety of neuropsychiatric disorders.


Subject(s)
Brain/pathology , Chromosome Deletion , Chromosomes, Human, Pair 22/genetics , Developmental Disabilities/genetics , Psychotic Disorders/genetics , Psychotic Disorders/pathology , Adolescent , Analysis of Variance , Brain Mapping , Catechol O-Methyltransferase/genetics , Child , Cognition Disorders/diagnosis , Cognition Disorders/etiology , Female , Functional Laterality , Genome-Wide Association Study/methods , Genotype , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Predictive Value of Tests , Psychiatric Status Rating Scales , Psychotic Disorders/complications , Risk Factors
4.
Neuroimage ; 52(2): 455-69, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20430102

ABSTRACT

Brain asymmetry, or the structural and functional specialization of each brain hemisphere, has fascinated neuroscientists for over a century. Even so, genetic and environmental factors that influence brain asymmetry are largely unknown. Diffusion tensor imaging (DTI) now allows asymmetry to be studied at a microscopic scale by examining differences in fiber characteristics across hemispheres rather than differences in structure shapes and volumes. Here we analyzed 4Tesla DTI scans from 374 healthy adults, including 60 monozygotic twin pairs, 45 same-sex dizygotic pairs, and 164 mixed-sex DZ twins and their siblings; mean age: 24.4years+/-1.9 SD). All DTI scans were nonlinearly aligned to a geometrically-symmetric, population-based image template. We computed voxel-wise maps of significant asymmetries (left/right differences) for common diffusion measures that reflect fiber integrity (fractional and geodesic anisotropy; FA, GA and mean diffusivity, MD). In quantitative genetic models computed from all same-sex twin pairs (N=210 subjects), genetic factors accounted for 33% of the variance in asymmetry for the inferior fronto-occipital fasciculus, 37% for the anterior thalamic radiation, and 20% for the forceps major and uncinate fasciculus (all L>R). Shared environmental factors accounted for around 15% of the variance in asymmetry for the cortico-spinal tract (R>L) and about 10% for the forceps minor (L>R). Sex differences in asymmetry (men>women) were significant, and were greatest in regions with prominent FA asymmetries. These maps identify heritable DTI-derived features, and may empower genome-wide searches for genetic polymorphisms that influence brain asymmetry.


Subject(s)
Brain/anatomy & histology , Models, Genetic , Anisotropy , Diffusion , Diffusion Tensor Imaging , Environment , Female , Humans , Image Processing, Computer-Assisted , Male , Models, Neurological , Neural Pathways/anatomy & histology , Nonlinear Dynamics , Sex Characteristics , Siblings , Twins, Dizygotic , Twins, Monozygotic , Young Adult
5.
Neuroimage ; 49(1): 134-40, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19643183

ABSTRACT

We examined 3D patterns of volume differences in the brain associated with blindness, in subjects grouped according to early and late onset. Using tensor-based morphometry, we mapped volume reductions and gains in 16 early-onset (EB) and 16 late-onset (LB) blind adults (onset <5 and >14 years old, respectively) relative to 16 matched sighted controls. Each subject's structural MRI was fluidly registered to a common template. Anatomical differences between groups were mapped based on statistical analysis of the resulting deformation fields revealing profound deficits in primary and secondary visual cortices for both blind groups. Regions outside the occipital lobe showed significant hypertrophy, suggesting widespread compensatory adaptations. EBs but not LBs showed deficits in the splenium and the isthmus. Gains in the non-occipital white matter were more widespread in the EBs. These differences may reflect regional alterations in late neurodevelopmental processes, such as myelination, that continue into adulthood.


Subject(s)
Blindness/pathology , Brain/pathology , Adult , Age of Onset , Algorithms , Brain Mapping , Corpus Callosum/pathology , Data Interpretation, Statistical , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Middle Aged , Occipital Lobe/pathology , Young Adult
6.
Proc IEEE Int Symp Biomed Imaging ; 2010: 101-104, 2010 Apr.
Article in English | MEDLINE | ID: mdl-30546822

ABSTRACT

Imaging genetics is a new field of neuroscience that blends methods from computational anatomy and quantitative genetics to identify genetic influences on brain structure and function. Here we analyzed brain MRI data from 372 young adult twins to identify cortical regions in which gray matter volume is influenced by genetic differences across subjects. Thickness maps, reconstructed from surface models of the cortical gray/white and gray/CSF interfaces, were smoothed with a 25 mm FWHM kernel and automatically parcellated into 34 regions of interest per hemisphere. In structural equation models fitted to volume values at each surface vertex, we computed components of variance due to additive genetic (A), shared (C) and unique (E) environmental factors, and tested their significance. Cortical regions in the vicinity of the perisylvian language cortex, and at the frontal and temporal poles, showed significant additive genetic variance, suggesting that volume measures from these regions may provide quantitative phenotypes to narrow the search for quantitative trait loci that influence brain structure.

7.
Proc IEEE Int Symp Biomed Imaging ; 2010: 364-367, 2010 Apr.
Article in English | MEDLINE | ID: mdl-30555622

ABSTRACT

In this paper, we develop and validate a new Statistically Assisted Fluid Registration Algorithm (SAFIRA) for brain images. A non-statistical version of this algorithm was first implemented in [2] and re-formulated using Lagrangian mechanics in [3]. Here we extend this algorithm to 3D: given 3D brain images from a population, vector fields and their corresponding deformation matrices are computed in a first round of registrations using the non-statistical implementation. Covariance matrices for both the deformation matrices and the vector fields are then obtained and incorporated (separately or jointly) in the regularizing (i.e., the non-conservative Lagrangian) terms, creating four versions of the algorithm. We evaluated the accuracy of each algorithm variant using the manually labeled LPBA40 dataset, which provides us with ground truth anatomical segmentations. We also compared the power of the different algorithms using tensor-based morphometry -a technique to analyze local volumetric differences in brain structure-applied to 46 3D brain scans from healthy monozygotic twins.

8.
Proc IEEE Int Symp Biomed Imaging ; 2010: 1157-1160, 2010 Apr.
Article in English | MEDLINE | ID: mdl-30555623

ABSTRACT

Twin studies are a major research direction in imaging genetics, a new field, which combines algorithms from quantitative genetics and neuroimaging to assess genetic effects on the brain. In twin imaging studies, it is common to estimate the intraclass correlation (ICC), which measures the resemblance between twin pairs for a given phenotype. In this paper, we extend the commonly used Pearson correlation to a more appropriate definition, which uses restricted maximum likelihood methods (REML). We computed proportion of phenotypic variance due to additive (A) genetic factors, common (C) and unique (E) environmental factors using a new definition of the variance components in the diffusion tensor-valued signals. We applied our analysis to a dataset of Diffusion Tensor Images (DTI) from 25 identical and 25 fraternal twin pairs. Differences between the REML and Pearson estimators were plotted for different sample sizes, showing that the REML approach avoids severe biases when samples are smaller. Measures of genetic effects were computed for scalar and multivariate diffusion tensor derived measures including the geodesic anisotropy (tGA) and the full diffusion tensors (DT), revealing voxel-wise genetic contributions to brain fiber microstructure.

9.
Hum Brain Mapp ; 31(7): 970-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19998367

ABSTRACT

In the prelingual and congenital deaf, functional reorganization is known to occur throughout brain regions normally associated with hearing. However, the anatomical correlates of these changes are not yet well understood. Here, we perform the first tensor-based morphometric analysis of voxel-wise volumetric differences in native signing prelingual and congenitally deaf subjects when compared with hearing controls. We obtained T1-weighted scans for 14 native signing prelingual and congenitally deaf subjects and 16 age- and gender-matched controls. We used linear and fluid registration to align each image to a common template. Using the voxel-wise determinant of the Jacobian of the fluid deformation, significant volume increases, of up to 20%, were found in frontal lobe white matter regions including Broca's area, and adjacent regions involved in motor control and language production. A similar analysis was performed on hand-traced corpora callosa. A strong trend for group differences was found in the area of the splenium considered to carry fibers connecting the temporal (and occipital) lobes. These anatomical differences may reflect experience-mediated developmental differences in myelination and cortical maturation associated with prolonged monomodal sensory deprivation.


Subject(s)
Brain/pathology , Deafness/pathology , Adult , Case-Control Studies , Corpus Callosum/pathology , Deafness/congenital , Diffusion Tensor Imaging/methods , Female , Humans , Imaging, Three-Dimensional/methods , Linear Models , Male , Middle Aged , Neural Pathways/pathology , Organ Size , Time Factors , Young Adult
10.
Neuroimage ; 49(2): 1357-71, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19819339

ABSTRACT

A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6

Subject(s)
Corpus Callosum/physiology , Diffusion Magnetic Resonance Imaging/methods , Algorithms , Anisotropy , Computer Simulation , Diffusion , Female , Humans , Imaging, Three-Dimensional/methods , Male , Models, Neurological , Young Adult
11.
Neuroimage ; 48(1): 37-49, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19446645

ABSTRACT

Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8+/-1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.


Subject(s)
Brain/anatomy & histology , Twins, Dizygotic , Twins, Monozygotic , Adult , Environment , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Male , Models, Neurological , Organ Size , Phenotype , Sequence Analysis, DNA , Young Adult
12.
IEEE Trans Med Imaging ; 28(3): 361-73, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19244008

ABSTRACT

In this paper, we propose an automated approach for the joint detection of major sulci on cortical surfaces. By representing sulci as nodes in a graphical model, we incorporate Markovian relations between sulci and formulate their detection as a maximum a posteriori (MAP) estimation problem over the joint space of major sulci. To make the inference tractable, a sample space with a finite number of candidate curves is automatically generated at each node based on the Hamilton-Jacobi skeleton of sulcal regions. Using the AdaBoost algorithm, we learn both individual and pairwise shape priors of sulcal curves from training data, which are then used to define potential functions in the graphical model based on the connection between AdaBoost and logistic regression. Finally belief propagation is used to perform the MAP inference and select the joint detection results from the sample spaces of candidate curves. In our experiments, we quantitatively validate our algorithm with manually traced curves and demonstrate the automatically detected curves can capture the main body of sulci very accurately. A comparison with independently detected results is also conducted to illustrate the advantage of the joint detection approach.


Subject(s)
Algorithms , Brain Mapping/methods , Cerebral Cortex/anatomy & histology , Pattern Recognition, Automated/methods , Humans , Logistic Models , Markov Chains , Reproducibility of Results
13.
J Neurosci ; 29(7): 2212-24, 2009 Feb 18.
Article in English | MEDLINE | ID: mdl-19228974

ABSTRACT

The study is the first to analyze genetic and environmental factors that affect brain fiber architecture and its genetic linkage with cognitive function. We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4 Tesla), in 92 identical and fraternal twins. White matter integrity, quantified using fractional anisotropy (FA), was used to fit structural equation models (SEM) at each point in the brain, generating three-dimensional maps of heritability. We visualized the anatomical profile of correlations between white matter integrity and full-scale, verbal, and performance intelligence quotients (FIQ, VIQ, and PIQ). White matter integrity (FA) was under strong genetic control and was highly heritable in bilateral frontal (a(2)=0.55, p=0.04, left; a(2)=0.74, p=0.006, right), bilateral parietal (a(2)=0.85, p<0.001, left; a(2)=0.84, p<0.001, right), and left occipital (a(2)=0.76, p=0.003) lobes, and was correlated with FIQ and PIQ in the cingulum, optic radiations, superior fronto-occipital fasciculus, internal capsule, callosal isthmus, and the corona radiata (p=0.04 for FIQ and p=0.01 for PIQ, corrected for multiple comparisons). In a cross-trait mapping approach, common genetic factors mediated the correlation between IQ and white matter integrity, suggesting a common physiological mechanism for both, and common genetic determination. These genetic brain maps reveal heritable aspects of white matter integrity and should expedite the discovery of single-nucleotide polymorphisms affecting fiber connectivity and cognition.


Subject(s)
Brain/anatomy & histology , Brain/growth & development , Inheritance Patterns/genetics , Intelligence/genetics , Nerve Fibers, Myelinated/ultrastructure , Quantitative Trait, Heritable , Adult , Brain Mapping , Cognition/physiology , Diffusion Magnetic Resonance Imaging , Environment , Female , Gene Expression Regulation, Developmental/genetics , Humans , Intelligence Tests , Male , Nerve Fibers, Myelinated/physiology , Nerve Net/anatomy & histology , Nerve Net/growth & development , Neural Pathways/anatomy & histology , Neural Pathways/growth & development , Phenotype , Young Adult
14.
Cereb Cortex ; 19(1): 115-26, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18483006

ABSTRACT

The 22q11.2 deletion syndrome (velocardiofacial/DiGeorge syndrome) is a neurogenetic condition associated with visuospatial deficits, as well as elevated rates of attentional disturbance, mood disorder, and psychosis. Previously, we detected pronounced cortical thinning in superior parietal and right parieto-occipital cortices in patients with this syndrome, regions critical for visuospatial processing. Here we applied cortical pattern-matching algorithms to structural magnetic resonance images obtained from 21 children with confirmed 22q11.2 deletions (ages 8-17) and 13 demographically matched comparison subjects, in order to map cortical thickness across the medial hemispheric surfaces. In addition, cortical models were remeshed in frequency space to compute their surface complexity. Cortical maps revealed a pattern of localized thinning in the ventromedial occipital-temporal cortex, critical for visuospatial representation, and the anterior cingulate, a key area for attentional control. However, children with 22q11.2DS showed significantly increased gyral complexity bilaterally in occipital cortex. Regional gray matter volumes, particularly in medial frontal cortex, were strongly correlated with both verbal and nonverbal cognitive functions. These findings suggest that aberrant parieto-occipital brain development, as evidenced by both increased complexity and cortical thinning in these regions, may be a neural substrate for the deficits in visuospatial and numerical understanding characteristic of this syndrome.


Subject(s)
Cerebral Cortex/pathology , DiGeorge Syndrome/pathology , Magnetic Resonance Imaging , Models, Anatomic , Models, Neurological , Neurons/pathology , Child , Female , Humans , Male
15.
Article in English | MEDLINE | ID: mdl-29805733

ABSTRACT

Studies of cerebral asymmetry can open doors to understanding the functional specialization of each brain hemisphere, and how this is altered in disease. Here we examined hemispheric asymmetries in fiber architecture using diffusion tensor imaging (DTI) in 100 subjects, using high-dimensional fluid warping to disentangle shape differences from measures sensitive to myelination. Confounding effects of purely structural asymmetries were reduced by using co-registered structural images to fluidly warp 3D maps of fiber characteristics (fractional and geodesic anisotropy) to a structurally symmetric minimal deformation template (MDT). We performed a quantitative genetic analysis on 100 subjects to determine whether the sources of the remaining signal asymmetries were primarily genetic or environmental. A twin design was used to identify the heritable features of fiber asymmetry in various regions of interest, to further assist in the discovery of genes influencing brain micro-architecture and brain lateralization. Genetic influences and left/right asymmetries were detected in the fiber architecture of the frontal lobes, with minor differences depending on the choice of registration template.

16.
Article in English | MEDLINE | ID: mdl-30546821

ABSTRACT

We present a new algorithm to compute the voxel-wise genetic contribution to brain fiber microstructure using diffusion tensor imaging (DTI) in a dataset of 25 pairs of monozygotic (MZ) twins and 25 pairs of dizygotic (DZ) twins. First, the structural and DT scans were linearly co-registered. The structural MR scans were nonlinear mapped via a 3D fluid transformation to a geometrically centered mean template, and the deformation fields were applied to the DTI volumes. After tensor re-orientation to realign them to the anatomy, we computed several scalar and multivariate DT-derived measures including the geodesic anisotropy (GA), the tensor eigenvalues and the full diffusion tensors. A covariance-weighted distance was found between twins in the Log-Euclidean framework [2], and used as input to a maximum-likelihood based algorithm to compute the contributions from genetics (A), common environmental factors (C) and unique environmental ones (E) to fiber architecture. Quantitative genetic studies can make use of the full information in the diffusion tensor, using covariance weighted distances and statistics on the tensor manifold.

17.
Article in English | MEDLINE | ID: mdl-30555621

ABSTRACT

We defined a new statistical fluid registration method with Lagrangian mechanics. Although several authors have suggested that empirical statistics on brain variation should be incorporated into the registration problem, few algorithms have included this information and instead use regularizers that guarantee diffeomorphic mappings. Here we combine the advantages of a large-deformation fluid matching approach with empirical statistics on population variability in anatomy. We reformulated the Riemannian fluid algorithm developed in [4], and used a Lagrangian framework to incorporate 0 th and 1 rst order statistics in the regularization process. 92 2D midline corpus callosum traces from a twin MRI database were fluidly registered using the non-statistical version of the algorithm (algorithm 0), giving initial vector fields and deformation tensors. Covariance matrices were computed for both distributions and incorporated either separately (algorithm 1 and algorithm 2) or together (algorithm 3) in the registration. We computed heritability maps and two vector and tensor-based distances to compare the power and the robustness of the algorithms.

18.
Med Image Comput Comput Assist Interv ; 12(Pt 1): 967-74, 2009.
Article in English | MEDLINE | ID: mdl-20426082

ABSTRACT

Information from the full diffusion tensor (DT) was used to compute voxel-wise genetic contributions to brain fiber microstructure. First, we designed a new multivariate intraclass correlation formula in the log-Euclidean framework. We then analyzed used the full multivariate structure of the tensor in a multivariate version of a voxel-wise maximum-likelihood structural equation model (SEM) that computes the variance contributions in the DTs from genetic (A), common environmental (C) and unique environmental (E) factors. Our algorithm was tested on DT images from 25 identical and 25 fraternal twin pairs. After linear and fluid registration to a mean template, we computed the intraclass correlation and Falconer's heritability statistic for several scalar DT-derived measures and for the full multivariate tensors. Covariance matrices were found from the DTs, and inputted into SEM. Analyzing the full DT enhanced the detection of A and C effects. This approach should empower imaging genetics studies that use DTI.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Diffusion Magnetic Resonance Imaging/methods , Twins/genetics , Twins/physiology , Adult , Female , Humans , Male
19.
Med Image Comput Comput Assist Interv ; 12(Pt 2): 498-505, 2009.
Article in English | MEDLINE | ID: mdl-20426149

ABSTRACT

Brain asymmetry has been a topic of interest for neuroscientists for many years. The advent of diffusion tensor imaging (DTI) allows researchers to extend the study of asymmetry to a microscopic scale by examining fiber integrity differences across hemispheres rather than the macroscopic differences in shape or structure volumes. Even so, the power to detect these microarchitectural differences depends on the sample size and how the brain images are registered and how many subjects are studied. We fluidly registered 4 Tesla DTI scans from 180 healthy adult twins (45 identical and fraternal pairs) to a geometrically-centered population mean template. We computed voxelwise maps of significant asymmetries (left/right hemisphere differences) for common fiber anisotropy indices (FA, GA). Quantitative genetic models revealed that 47-62% of the variance in asymmetry was due to genetic differences in the population. We studied how these heritability estimates varied with the type of registration target (T1- or T2-weighted) and with sample size. All methods consistently found that genetic factors strongly determined the lateralization of fiber anisotropy, facilitating the quest for specific genes that might influence brain asymmetry and fiber integrity.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Twins/genetics , Anisotropy , Humans , Phenotype , Reproducibility of Results , Sample Size , Sensitivity and Specificity
20.
Med Image Comput Comput Assist Interv ; 11(Pt 2): 914-21, 2008.
Article in English | MEDLINE | ID: mdl-18982692

ABSTRACT

We incorporated a new Riemannian fluid registration algorithm into a general MRI analysis method called tensor-based morphometry to map the heritability of brain morphology in MR images from 23 monozygotic and 23 dizygotic twin pairs. All 92 3D scans were fluidly registered to a common template. Voxelwise Jacobian determinants were computed from the deformation fields to assess local volumetric differences across subjects. Heritability maps were computed from the intraclass correlations and their significance was assessed using voxelwise permutation tests. Lobar volume heritability was also studied using the ACE genetic model. The performance of this Riemannian algorithm was compared to a more standard fluid registration algorithm: 3D maps from both registration techniques displayed similar heritability patterns throughout the brain. Power improvements were quantified by comparing the cumulative distribution functions of the p-values generated from both competing methods. The Riemannian algorithm outperformed the standard fluid registration.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Subtraction Technique , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Algorithms , Female , Humans , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Male , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...