Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(4): 112410, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37071533

ABSTRACT

Genital herpes is characterized by recurrent episodes of epithelial blistering. The mechanisms causing this pathology are ill defined. Using a mouse model of vaginal herpes simplex virus 2 (HSV-2) infection, we show that interleukin-18 (IL-18) acts upon natural killer (NK) cells to promote accumulation of the serine protease granzyme B in the vagina, coinciding with vaginal epithelial ulceration. Genetic loss of granzyme B or therapeutic inhibition by a specific protease inhibitor reduces disease and restores epithelial integrity without altering viral control. Distinct effects of granzyme B and perforin deficiency on pathology indicates that granzyme B acts independent of its classic cytotoxic role. IL-18 and granzyme B are markedly elevated in human herpetic ulcers compared with non-herpetic ulcers, suggesting engagement of these pathways in HSV-infected patients. Our study reveals a role for granzyme B in destructing mucosal epithelium during HSV-2 infection, identifying a therapeutic target to augment treatment of genital herpes.


Subject(s)
Herpes Genitalis , Herpes Simplex , Female , Humans , Granzymes/metabolism , Herpesvirus 2, Human/metabolism , Interleukin-18 , Killer Cells, Natural/metabolism , Ulcer , Vagina
2.
JCI Insight ; 5(5)2020 03 12.
Article in English | MEDLINE | ID: mdl-32161194

ABSTRACT

Herpes simplex virus-2 (HSV-2) and HSV-1 both can cause genital herpes, a chronic infection that establishes a latent reservoir in the nervous system. Clinically, the recurrence frequency of HSV-1 genital herpes is considerably less than HSV-2 genital herpes, which correlates with reduced neuronal infection. The factors dictating the disparate outcomes of HSV-1 and HSV-2 genital herpes are unclear. In this study, we show that vaginal infection of mice with HSV-1 leads to the rapid appearance of mature DCs in the draining lymph node, which is dependent on an early burst of NK cell-mediated IFN-γ production in the vagina that occurs after HSV-1 infection but not HSV-2 infection. Rapid DC maturation after HSV-1 infection, but not HSV-2 infection, correlates with the accelerated generation of a neuroprotective T cell response and early accumulation of IFN-γ-producing T cells at the site of infection. Depletion of T cells or loss of IFN-γ receptor (IFN-γR) expression in sensory neurons both lead to a marked loss of neuroprotection only during HSV-1, recapitulating a prominent feature of HSV-2 infection. Our experiments reveal key differences in host control of neuronal HSV-1 and HSV-2 infection after genital exposure of mice, and they define parameters of a successful immune response against genital herpes.


Subject(s)
Herpes Simplex/immunology , Nervous System Diseases/immunology , Nervous System Diseases/virology , T-Lymphocytes/immunology , Animals , Cell Differentiation , Female , Herpes Simplex/metabolism , Herpes Simplex/virology , Herpesvirus 1, Human/pathogenicity , Herpesvirus 2, Human/pathogenicity , Host-Pathogen Interactions , Interferon-gamma/biosynthesis , Mice , Mice, Inbred C57BL
3.
Mol Ther Nucleic Acids ; 15: 1-11, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30785039

ABSTRACT

mRNA vaccines have the potential to tackle many unmet medical needs that are unable to be addressed with conventional vaccine technologies. A potent and well-tolerated delivery technology is integral to fully realizing the potential of mRNA vaccines. Pre-clinical and clinical studies have demonstrated that mRNA delivered intramuscularly (IM) with first-generation lipid nanoparticles (LNPs) generates robust immune responses. Despite progress made over the past several years, there remains significant opportunity for improvement, as the most advanced LNPs were designed for intravenous (IV) delivery of siRNA to the liver. Here, we screened a panel of proprietary biodegradable ionizable lipids for both expression and immunogenicity in a rodent model when administered IM. A subset of compounds was selected and further evaluated for tolerability, immunogenicity, and expression in rodents and non-human primates (NHPs). A lead formulation was identified that yielded a robust immune response with improved tolerability. More importantly for vaccines, increased innate immune stimulation driven by LNPs does not equate to increased immunogenicity, illustrating that mRNA vaccine tolerability can be improved without affecting potency.

4.
J Org Chem ; 80(16): 8417-23, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26172089

ABSTRACT

An approach to the synthesis of sulfonamides from sulfamoyl inner salts and organometallic species is presented. A range of sulfamoyl carbamates, amines, and metals are explored. Primary, secondary, and tertiary alkyl-, aryl-, and heteroaryllitihium and magnesium nucleophiles were successful. This approach yields bench-stable intermediates and avoids many of the functional group incompatibilities, regioselectivity issues, and high-energy reagents generally associated with the synthesis of sulfonamides. Additionally, the products may be purified by basic extraction or salt formation, avoiding chromatography.


Subject(s)
Carbamates/chemistry , Organometallic Compounds/chemistry , Sulfonamides/chemical synthesis , Catalysis , Indicators and Reagents/chemistry , Molecular Structure , Sulfonamides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...