Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(11): e80462, 2013.
Article in English | MEDLINE | ID: mdl-24265826

ABSTRACT

Previously we developed genomic resources for orchids, including transcriptomic analyses using next-generation sequencing techniques and construction of a web-based orchid genomic database. Here, we report a modified molecular model of flower development in the Orchidaceae based on functional analysis of gene expression profiles in Phalaenopsis aphrodite (a moth orchid) that revealed novel roles for the transcription factors involved in floral organ pattern formation. Phalaenopsis orchid floral organ-specific genes were identified by microarray analysis. Several critical transcription factors including AP3, PI, AP1 and AGL6, displayed distinct spatial distribution patterns. Phylogenetic analysis of orchid MADS box genes was conducted to infer the evolutionary relationship among floral organ-specific genes. The results suggest that gene duplication MADS box genes in orchid may have resulted in their gaining novel functions during evolution. Based on these analyses, a modified model of orchid flowering was proposed. Comparison of the expression profiles of flowers of a peloric mutant and wild-type Phalaenopsis orchid further identified genes associated with lip morphology and peloric effects. Large scale investigation of gene expression profiles revealed that homeotic genes from the ABCDE model of flower development classes A and B in the Phalaenopsis orchid have novel functions due to evolutionary diversification, and display differential expression patterns.


Subject(s)
Flowers/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Models, Biological , Orchidaceae/genetics , Transcriptome , Cluster Analysis , MADS Domain Proteins/genetics , Multigene Family , Mutation , Orchidaceae/classification , Organ Specificity/genetics , Phenotype , Phylogeny , Reproducibility of Results , Transcription Factors/genetics
2.
Plant Cell Physiol ; 52(9): 1501-14, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21771864

ABSTRACT

Being one of the largest families in the angiosperms, Orchidaceae display a great biodiversity resulting from adaptation to diverse habitats. Genomic information on orchids is rather limited, despite their unique and interesting biological features, thus impeding advanced molecular research. Here we report a strategy to integrate sequence outputs of the moth orchid, Phalaenopsis aphrodite, from two high-throughput sequencing platform technologies, Roche 454 and Illumina/Solexa, in order to maximize assembly efficiency. Tissues collected for cDNA library preparation included a wide range of vegetative and reproductive tissues. We also designed an effective workflow for annotation and functional analysis. After assembly and trimming processes, 233,823 unique sequences were obtained. Among them, 42,590 contigs averaging 875 bp in length were annotated to protein-coding genes, of which 7,263 coding genes were found to be nearly full length. The sequence accuracy of the assembled contigs was validated to be as high as 99.9%. Genes with tissue-specific expression were also categorized by profiling analysis with RNA-Seq. Gene products targeted to specific subcellular localizations were identified by their annotations. We concluded that, with proper assembly to combine outputs of next-generation sequencing platforms, transcriptome information can be enriched in gene discovery, functional annotation and expression profiling of a non-model organism.


Subject(s)
Gene Expression Profiling/methods , Orchidaceae/genetics , Transcriptome , Contig Mapping , DNA, Plant/genetics , Databases, Genetic , Gene Library , Molecular Sequence Annotation , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...