Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Radiat Oncol Biol Phys ; 61(5): 1523-34, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15817359

ABSTRACT

PURPOSE: Although radiotherapy is highly effective in relieving bone pain due to cancer invasion, its mechanism remains unclear. The aim of this study was to explore this mechanism in an animal model system. METHODS AND MATERIALS: A hind paw model of cancer pain was developed by transplanting a murine hepatocarcinoma, HCa-1, into the periosteal membrane of the foot dorsum of C3H/HeJ mice. Bone invasion from HCa-1 was histopathologically confirmed from sequential tumor sampling. For three experimental groups, a control (N), tumor without radiation (T), and tumor with radiation (TR), the development and level of pain were objectively examined in mice with a growing tumor by assessing pain-associated behavior. The differential expression of pain-related signals in the spinal cord was analyzed by proteomic analysis using high-resolution two-dimensional gel electrophoresis (2-DE) and mass spectrometry, and those of proteins by Western blotting. The pain-mediating neurotransmitters in the spinal cord were also examined by immunohistochemical staining for calcitonin gene-related peptide (CGRP) and substance P. RESULTS: In the histopathologic examinations, bone invasion from HCa-1 was seen from Day 7 and was evident at Day 14 after transplantation, and measurable pain-associated behaviors were developed from Day 7. After 25 Gy of radiation to the tumors, the objective level of pain in the TR group decreased, with higher thresholds to mechanical and thermal stimulation than in the T group. From the 2-DE of spinal cord, 107 spots were identified; 12 proteins were changed more than fivefold because of tumor formation but then reversed after radiation in the tumor-bearing mice. The proteins involved included secretagogin, syntenin, P2X purinoreceptor 6 (P2X6), and Ca(2+)/Calmodulin-dependent protein kinase 1 (CaM kinase 1), the functions of which have been known to be involved in the Ca(2+)-signaling cascade, ATP-mediated fast synaptic transmission, or control of vesicular trafficking. Validations using Western blotting were successful for the CaM kinase and P2X6. In immunohistochemical staining of the spinal cord, a significant decrease after irradiation was shown in the expression of CGRP, but not in substance P. CONCLUSIONS: We developed a novel model for bone pain due to cancer invasion, which was confirmed by histopathologic examination and measurable pain-associated behaviors. Radiotherapy decreased the objective level of pain. The underlying mechanism seems to be related to the Ca(2+)-signaling cascade or control of vesicular trafficking.


Subject(s)
Bone Neoplasms/radiotherapy , Neoplasm Proteins/metabolism , Pain/radiotherapy , Proteomics/methods , Spinal Cord/metabolism , Analgesia , Animals , Blotting, Western , Bone Neoplasms/metabolism , Bone Neoplasms/physiopathology , Bone Neoplasms/secondary , Calcitonin Gene-Related Peptide/metabolism , Electrophoresis, Gel, Two-Dimensional , Male , Mass Spectrometry , Mice , Mice, Inbred C3H , Models, Animal , Pain/metabolism , Pain/physiopathology , Pain Measurement , Substance P/metabolism
2.
Ann N Y Acad Sci ; 1030: 179-86, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15659796

ABSTRACT

Although radiotherapy is highly effective in relieving bone pain from cancer invasion, the mechanism of pain relief remains unclear. To explore the mechanism of radiotherapy-induced analgesia, we have developed an animal model of bone pain resulting from cancer invasion. Using this animal model system, radiation-induced pain response and pain-related signals in the spinal cord were analyzed. The hind paw model of bone pain from cancer invasion was developed by injecting transplantable hepatocellular carcinoma, HCa-1, into the periosteal membrane of the foot dorsum in C3H/HeJ mice. Bony invasion from HCa-1 cells was confirmed by histopathological examinations. We also measured the development of pain-associated behaviors. In this model, changes in the objective level of pain response after irradiation of the tumor were analyzed. Expression of pain-related host signals in the spinal cord, such as calcitonin gene-related peptide (CGRP), substance P, and c-fos, was investigated with immunohistochemical staining. In the histopathological examinations, bone invasion from HCa-1 cells was seen from day 7 and was evident at day 14 after injection. Measurable pain-associated behaviors were developed from day 7. In this model, mice treated with radiotherapy showed decreased objective levels of pain with a higher threshold to graded mechanical stimulation than did control mice from day 3 after irradiation. After irradiation of tumors, significant decreases in the expression of CGRP were shown in the spinal cord, whereas neither substance P nor c-fos showed any alteration. We developed a novel hind paw model of bone pain from cancer invasion that was confirmed by histopathological examination and measurable pain-associated behaviors. Radiotherapy decreased the objective level of pain and the underlying mechanism involved in the alteration of pain-related host signal, CGRP, in the spinal cord.


Subject(s)
Bone Neoplasms/radiotherapy , Bone Neoplasms/secondary , Pain/physiopathology , Signal Transduction/radiation effects , Animals , Bone Neoplasms/complications , Calcitonin Gene-Related Peptide/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Mice , Pain/etiology , Spinal Cord/physiopathology , Substance P/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...