Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Water Res ; 250: 121009, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38118256

ABSTRACT

While electrodialysis (ED) demonstrates lower energy consumption than reverse osmosis (RO) in the desalination of low salinity waters, RO continues to be the predominant technology for brackish water desalination. In this study, we probe this skewed market share and project the potential for future disruption by ED through systematic assessment of the levelized cost of water (LCOW). Using rigorous process- and economic-models, we minimize the LCOW of RO and ED systems, highlighting important tradeoffs between capital and operating expenditure for each technology. With optimized current state-of-the-art systems, we find that ED is more economical than RO for feed salinities ≤ 3 g L-1, albeit to a minor extent. Considering that RO is a highly mature technology, we focus on predicting the future potential of ED by evaluating plausible avenues for capital and operating cost reduction. Specifically, we find that reduction in the price of ion-exchange membranes (i.e., < 60 USD m-2) can ensure competitiveness with RO for feed salinities up to 5 g L-1. For higher feed salinities (≥ 5 g L-1) we reveal that the LCOW of ED may effectively be reduced by decreasing ion-exchange membrane resistance, while preserving high current efficiency. Through extensive assessment of structure-property-performance relationships, we precisely identify target membrane charge densities and diffusion coefficients which optimize the LCOW of ED, thus providing novel guidance for future membrane material development. Overall, we emphasize that with a unified approach - whereby ion-exchange membrane price is reduced and performance is enhanced - ED can become the economically preferable technology compared to RO across the entire brackish water salinity range.


Subject(s)
Water Purification , Cost-Benefit Analysis , Osmosis , Saline Waters , Water , Membranes, Artificial
3.
Small ; 19(47): e2303263, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37434049

ABSTRACT

A cobalt phthalocyanine having an electron-poor CoN4 (+δ) in its phthalocyanine moiety was presented as an electrocatalyst for hydrogen peroxide oxidation reaction (HPOR). We suggested that hydrogen peroxide as an electrolysis medium for hydrogen production and therefore as a hydrogen carrier, demonstrating that the electrocatalyst guaranteed high hydrogen production rate by hydrogen peroxide splitting. The electron deficiency of cobalt allows CoN4 to have the highly HPOR-active monovalent oxidation state and facilitates HPOR at small overpotentials range around the onset potential. The strong interaction between the electron-deficient cobalt and oxygen of peroxide adsorbates in Co─OOH- encourages an axially coordinated cobalt oxo complex (O═CoN4 ) to form, the O═CoN4 facilitating the HPOR efficiently at high overpotentials. Low-voltage oxygen evolution reaction guaranteeing low-voltage hydrogen production is successfully demonstrated in the presence of the metal-oxo complex having electron-deficient CoN4 . Hydrogen production by 391 mA cm-2 at 1 V and 870 mA cm-2 at 1.5 V is obtained. Also, the techno-economic benefit of hydrogen peroxide as a hydrogen carrier is evaluated by comparing hydrogen peroxide with other hydrogen carriers such as ammonia and liquid organic hydrogen carriers.

5.
Environ Sci Technol ; 56(18): 12828-12837, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36036930

ABSTRACT

As the prices of photovoltaics and wind turbines continue to decrease, more renewable electricity-generating capacity is installed globally. While this is considered an integral part of a sustainable energy future by many nations, it also poses a significant strain on current electricity grids due to the inherent output variability of renewable electricity. This work addresses the challenge of renewable electricity surplus (RES) utilization with target-scaling of centralized power-to-gas (PtG) hydrogen production. Using the Republic of Korea as a case study, due to its ambitious plan of 2030 green hydrogen production capacity of 0.97 million tons year-1, we combine predictions of future, season-averaged RES with a detailed conceptual process simulation for green H2 production via polymer electrolyte membrane (PEM) electrolysis combined with a desalination plant in six distinct scale cases (0.5-8.5 GW). It is demonstrated that at scales of 0.5 to 1.75 GW the RES is optimally utilized, and PtG hydrogen can therefore outperform conventional hydrogen production both environmentally (650-2210 Mton CO2 not emitted per year) and economically (16-30% levelized cost reduction). Beyond these scales, the PtG benefits sharply drop, and thus it is answered how much of the planned green hydrogen target can realistically be "green" if produced domestically on an industrial scale.


Subject(s)
Carbon Dioxide , Hydrogen , Electricity , Polymers , Renewable Energy
6.
Environ Sci Technol ; 56(15): 10577-10585, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35829620

ABSTRACT

Securing decarbonized economies for energy and commodities will require abundant and widely available green H2. Ubiquitous wastewaters and nontraditional water sources could potentially feed water electrolyzers to produce this green hydrogen without competing with drinking water sources. Herein, we show that the energy and costs of treating nontraditional water sources such as municipal wastewater, industrial and resource extraction wastewater, and seawater are negligible with respect to those for water electrolysis. We also illustrate that the potential hydrogen energy that could be mined from these sources is vast. Based on these findings, we evaluate the implications of small-scale, distributed water electrolysis using disperse nontraditional water sources. Techno-economic analysis and life cycle analysis reveal that the significant contribution of H2 transportation to costs and CO2 emissions results in an optimal levelized cost of hydrogen at small- to moderate-scale water electrolyzer size. The implications of utilizing nontraditional water sources and decentralized or stranded renewable energy for distributed water electrolysis are highlighted for several hydrogen energy storage and chemical feedstock applications. Finally, we discuss challenges and opportunities for mining H2 from nontraditional water sources to achieve resilient and sustainable economies for water and energy.


Subject(s)
Hydrogen , Wastewater , Electrolysis/methods , Renewable Energy , Water
7.
Sci Total Environ ; 847: 157668, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35907550

ABSTRACT

With the rising environmental concern, sustainable chemistry should be accomplished by considering technical, economic, and environmental factors that guarantee the successful implementation of new alternative products. Hence, we performed the integrated techno-economic and life cycle assessment for two-step solvothermal liquefaction (two-pot synthesis) and simplified solvothermal liquefaction (one-pot synthesis) based on experiment results. Based on the itemized cost estimation, the unit biopolyol production costs obtained from the two-pot synthesis and one-pot synthesis were 10.0 $ kg-1 and 2.89 $ kg-1, respectively. To provide techno-economic guidelines for biopolyol production, profitability analysis, and uncertainty analysis were used to identify the economic feasibility of the proposed processes. In addition, the life cycle assessment results indicated that biopolyol production via the two-pot synthesis leads to a slightly lower greenhouse gas emission compared with the one-pot synthesis, which further required the use of an analytic hierarchy process to determine the best process for biopolyol production depending on the different weight points in the economic and environmental aspects. From these results, we can provide the technical performance, economic feasibility, and environmental impact of lab-scale biopolyol production from silvergrass residue, a low-cost waste of biomass saccharification.


Subject(s)
Greenhouse Gases , Biomass , Environment
8.
Waste Manag ; 135: 276-286, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34560510

ABSTRACT

Microalgae have the potential to utilize the nutrients in livestock urine and manure (LUM) for the production of useful biomass, which can be used as a source of bioindustry. This study aims to evaluate the economic benefits of LUM feedstock that have not been clearly discussed before. Two types of photobioreactors were designed with a capacity of 200 m3 d-1. Using the experimental data, the economic feasibility of the suggested processes was evaluated via techno-economic analysis. Itemized cost estimation indicated that the submerged membrane photobioreactor has a lower unit production cost (5.4 $ to 5.1 $ kg-1) than the conventional photobioreactor system (14.6 $ to 13.8 $ kg-1). In addition, LUM-based growth is another good option for reducing the unit production cost of biomass. The revenues from lowering the cost of LUM treatment significantly contribute to enhancing the economic profitability, where the break-even prices were 1.18 $ m-3 (photobioreactor) and 0.98 $ m-3 (submerged membrane photobioreactor). Finally, this study provides several emerging suggestions to reduce microalgal biomass production costs.


Subject(s)
Microalgae , Animals , Biomass , Livestock , Manure , Photobioreactors
9.
Bioresour Technol ; 306: 123086, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32179398

ABSTRACT

This study suggests the economic potential of biochar-based biodiesel production by conducting the techno-economic analysis. The itemized cost estimation was performed by categorizing biochar production facility and biodiesel conversion plants for 30,000 ton y-1 of biodiesel production capacity. The result of sensitivity analysis shows the methanol and waste cooking oil (WCO) costs are significantly sensitive to determine a unit biodiesel production cost. When the biodiesel selling price was 1.70 $ kg-1, the discounted payback period was varied from 1.91 (not discounted) to 2.06 years (10% discounted). In addition, the break-even price of biodiesel was calculated to 1.55 $ kg-1 when the discount rate was 10%. It means that this technology is to be feasible because of commercial diesel price (0.97 to 1.88 $ kg-1). The consideration of tax exemption and subsidy for biodiesel can be good option to supply WCO based energy production.

10.
Bioresour Technol ; 294: 122173, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31586730

ABSTRACT

The simplified direct-transesterification (DT) process was compared to the conventional biodiesel production process based on a reported previous experimental work with economic standpoint. Based on the process flow diagram, capital and operating costs were itemized properly and then unit biodiesel production cost was calculated. The results show the biodiesel production costs were 18.2 $ kg-1 (conventional process) and 12.5 $ kg-1 (DT process), respectively. Sensitivity analysis shows the source of biomass and chemical consumption are the major factors to determine total biodiesel production cost. The affecting factors were a solvent recycling, yield of biodiesel, and plant capacity and these values were varied to evaluate the variation of unit biodiesel production cost. As a result, the maximized biodiesel production cost went down to 3.5 $ kg-1, which is cost-competitive with other reported values of production cost.


Subject(s)
Microalgae , Biofuels , Biomass , Esterification , Solvents
11.
J Biomech Eng ; 132(10): 104501, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20887019

ABSTRACT

In this paper, frequency response (dynamic compression and recovery) is suggested as a new physical marker to differentiate between breast cancer cells (MCF7) and normal cells (MCF10A). A single cell is placed on the laminated piezoelectric actuator and a piezoresistive microcantilever is placed on the upper surface of the cell at a specified preload displacement (or an equivalent force). The piezoelectric actuator excites the single cell in a sinusoidal fashion and its dynamic deformation is then evaluated from the displacement converted by measuring the voltage output through a piezoresistor in the microcantilever. The microcantilever has a flat contact surface with no sharp tip, making it possible to measure the overall properties of the cell rather than the local properties. These results indicate that the MCF7 cells are more deformable in quasi-static conditions compared with MCF10A cells, consistent with known characteristics. Under conditions of high frequency of over 50 Hz at a 1 µm preload displacement, 1 Hz at a 2 µm preload displacement, and all frequency ranges tested at a 3 µm preload displacement, MCF7 cells showed smaller deformation than MCF10A cells. MCF7 cells have higher absorption than MCF10A cells such that MCF7 cells appear to have higher deformability according to increasing frequency. Moreover, larger preload and higher frequencies are shown to enhance the differences in cell deformability between the MCF7 cells and MCF10A cells, which can be used as a physical marker for differentiating between MCF10A cells and MCF7 cells, even for high-speed screening devices.


Subject(s)
Biomedical Engineering/instrumentation , Breast Neoplasms/diagnosis , Breast Neoplasms/physiopathology , Biomechanical Phenomena , Breast/cytology , Breast/physiology , Breast Neoplasms/pathology , Cell Line , Cell Line, Tumor , Equipment Design , Female , Humans , Models, Biological , Reference Values , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...