Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 283: 131164, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34144291

ABSTRACT

Limited studies of quantitative toxicity-toxicity relationship (QTTR) modeling have been conducted to predict interspecies toxicity of engineered nanomaterials (ENMs) between aquatic test species. A meta-analysis of 66 publications providing acute toxicity data of silver nanoparticles (AgNPs) to daphnia and fish was performed, and the toxicity data, physicochemical properties, and experimental conditions were collected and curated. Based on Euclidean distance (ED) grouping, a meaningful correlation of logarithmic lethal concentrations between daphnia and fish was derived for bare (R2bare = 0.47) and coated AgNPs (R2coated = 0.48) when a distance of 10 was applied. The correlation of coated AgNPs was improved (R2coated = 0.55) by the inclusion of descriptors of the coating materials. The correlations were further improved by R2bare = 0.57 and R2coated = 0.81 after additionally considering particle size only, and by R2bare = 0.59 and R2coated = 0.92 after considering particle size and zeta potential simultaneously. The developed ED-based nano-QTTR model demonstrated that inclusion of the coating material descriptors and physicochemical properties improved the goodness-of-fit to predict interspecies aquatic toxicity of AgNPs between daphnia and fish. This study provides insight for future in silico research on QTTR model development in ENM toxicology.


Subject(s)
Daphnia , Metal Nanoparticles , Animals , Metal Nanoparticles/toxicity , Particle Size , Silver/toxicity , Silver Nitrate
2.
Toxicol Rep ; 7: 995-1000, 2020.
Article in English | MEDLINE | ID: mdl-32874922

ABSTRACT

Quantitative structure-activity relationship (QSAR) models have been applied to predict a variety of toxicity endpoints. Their performance needs to be validated, in a variety of cases, to increase their applicability to chemical regulation. Using the data set of substances of very high concern (SVHCs), the performance of QSAR models were evaluated to predict the persistence and bioaccumulation of PBT, and the carcinogenicity and mutagenicity of CMR. BIOWIN and Toxtree showed higher sensitivity than other QSAR models - the former for persistence and bioaccumulation, the latter for carcinogenicity. In terms of mutagenicity, the sensitivities of QSAR models were underestimated, Toxtree was more accurate and specific than lazy structure-activity relationships (LAZARs) and Computer Assisted Evaluation of industrial chemical Substances According to Regulations (CAESAR). Using the weight of evidence (WoE) approach, which integrates results of individual QSAR models, enhanced the sensitivity of each toxicity endpoint. On the basis of obtained results, in particular the prediction of persistence and bioaccumulation by KOWWIN, a conservative criterion is recommended of log Kow greater than 4.5 in K-REACH, without an upper limit. This study suggests that reliable production of toxicity data by QSAR models is facilitated by a better understanding of the performance of these models.

SELECTION OF CITATIONS
SEARCH DETAIL
...