Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Tech (Berl) ; 65(5): 521-529, 2020 Oct 25.
Article in English | MEDLINE | ID: mdl-32463380

ABSTRACT

Objectives The phase characteristics of the representative frequency components of the Electroencephalogram (EEG) can be a means of understanding the brain functions of human senses and perception. In this paper, we found out that visual evoked potential (VEP) is composed of the dominant multi-band component signals of the EEG through the experiment. Methods We analyzed the characteristics of VEP based on the theory that brain evoked potentials can be decomposed into phase synchronized signals. In order to decompose the EEG signal into across each frequency component signals, we extracted the signals in the time-frequency domain with high resolution using the empirical mode decomposition method. We applied the Hilbert transform (HT) to extract the signal and synthesized it into a frequency band signal representing VEP components. VEP could be decomposed into phase synchronized δ, θ, α, and ß frequency signals. We investigated the features of visual brain function by analyzing the amplitude and latency of the decomposed signals in phase synchronized with the VEP and the phase-locking value (PLV) between brain regions. Results In response to visual stimulation, PLV values were higher in the posterior lobe region than in the anterior lobe. In the occipital region, the PLV value of theta band was observed high. Conclusions The VEP signals decomposed into constituent frequency components through phase analysis can be used as a method of analyzing the relationship between activated signals and brain function related to visual stimuli.


Subject(s)
Brain/physiology , Electroencephalography , Algorithms , Brain Mapping , Electroencephalography/methods , Evoked Potentials, Visual , Humans , Photic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL