Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 7065, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31068604

ABSTRACT

The carbonization and graphitization of carbon/carbon (C/C) composites prepared from mesocarbon microbeads (MCMB) and chopped carbon fiber (CCF) have been studied with a wide range of temperatures, CCF contents and MCMB sizes. Three different sizes of MCMB were prepared with coal tar pitch at three temperatures, 420, 430 and 440 °C, and identified as about 12.8, 16.0 and 20.1 µm, respectively. Each size of MCMB was mixed with CCFs at ratios of 2, 4, 6 and 8 wt. % and formed into block shape. After carbonization at 1200 °C, carbonized C/C blocks (CCBs) were graphitized at 2000, 2400 and 2800 °C. The CCB prepared with CCF content of 2 wt. % and an MCMB size of 16.0 µm exhibited the highest flexural strength of about 151 MPa. The graphitized C/C block (GCB) with CCF content of 2 wt. %, which was graphitized at 2000 °C showed the highest flexural strength of about 159 MPa.

2.
Heliyon ; 5(3): e01341, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30949600

ABSTRACT

High-strength and high-density carbonized carbon blocks from self-sintering coke were manufactured using coal tar and two-stage heat treatments (1st and 2nd stage treatments). First, the molecular weight distribution of the refined coal tar was controlled through a pressured heat treatment (1st stage treatment). Second, the 1st stage heat-treated coal tar (1S-CT) was treated using a delayed coking system (2nd stage treatment) to become the self-sintering coke. Finally, carbon blocks were molded from 2nd stage heat-treated coke (2S-C) and carbonized at 1200 °C for 1 h. Through rapid decomposition of the high molecular weight components in the coal tar at 360 °C in the 1st stage treatment, the molecular weight distribution of coal tar was confirmed to be controllable by the 1st stage treatment. Swelling during carbonization was observed in carbon blocks manufactured from 2S-C containing more than 15 wt% of volatile matter from 150-450 °C. The optimum conditions of the two-stage heat treatments were confirmed to be 300 °C for 3 h and 500 °C for 1 h. The highest density and flexural strength of the carbonized carbon blocks manufactured from 2S-C were 1.46 g/cm3 and 69.2 MPa, respectively.

3.
Sci Rep ; 8(1): 11064, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30038224

ABSTRACT

In this study, a high density carbon block without binder was manufactured by mesocarbon microbeads (MCMB) from coal tar pitch. To develop the high density carbon block without a binder, MCMBs were oxidized at different levels of temperature. To verify the effect of oxygen content in the carbonized carbon block (CCB), an elementary analysis (EA) and X-ray photoelectron spectroscopy (XPS) were performed. The morphological and mechanical properties of the CCBs were investigated by using scanning electron microscopy (SEM), a shore hardness test, and a flexural strength evaluation. The results revealed that the oxygen content increased with stabilization temperature and the physical properties of the CCBs were considerably improved via oxidative stabilization. Small cracks between MCMB particles were observed in the CCBs that were stabilized over 250 °C. From the results of this study, the CCB from MCMBs stabilized at 200 °C for 1 h showed optimum mechanical properties and high density.

4.
Nanomaterials (Basel) ; 6(8)2016 Aug 15.
Article in English | MEDLINE | ID: mdl-28335275

ABSTRACT

Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

5.
Nanomaterials (Basel) ; 2(2): 206-216, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-28348304

ABSTRACT

An easy method to synthesize SiOx coated carbon nanotubes (SiOx-CNT) through thermal decomposition of polycarbomethylsilane adsorbed on the surface of CNTs is reported. Physical properties of SiOx-CNT samples depending on various Si contents and synthesis conditions are examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen isotherm, scanning electron microscope (SEM), and transmission electron microscope (TEM). Morphology of the SiOx-CNT appears to be perfectly identical to that of the pristine CNT. It is confirmed that SiOx is formed in a thin layer of approximately 1 nm thickness over the surface of CNTs. The specific surface area is significantly increased by the coating, because thin layer of SiOx is highly porous. The surface properties such as porosity and thickness of SiOx layers are found to be controlled by SiOx contents and heat treatment conditions. The preparation method in this study is to provide useful nano-hybrid composite materials with multi-functional surface properties.

6.
J Nanosci Nanotechnol ; 11(7): 5775-80, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22121606

ABSTRACT

Carbon nanofibers (CNFs) with uniquely oriented channels were prepared via selective catalytic gasification in air at 450 and 500 degrees C, using Pt or Ru nano particles as catalysts. Catalytic gasification was chosen because it can selectively generate channels in the vicinity of the catalyst particles at relatively low temperatures, where thermal oxidation does not intensively occur. The structures and surface properties of the CNFs were examined via X-ray diffraction, analysis of the nitrogen adsorption-desorption isotherms, and high-resolution transmission electron microscopy. The effects of the catalyst species and loading amount on the formation of pores (channels) were investigated. The gasification mechanism, especially the channeling direction, throught the selection of the gasification catalysts, is discussed based on the results. This process can be effectively utilized for preparation of porous carbons, which have a well-aligned graphitic structure, and also channel-type pores can be designed by selection of gasification catalysts and conditions. The present porous CNF can be applied for catalyst support in fuel cells, without further treatment (e.g., acid treatment for the removal of metallic components).

7.
J Nanosci Nanotechnol ; 11(7): 6350-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22121714

ABSTRACT

The electrocatalytic activity of nitrogen-doped carbon nanofibers (N-CNFs), which are synthesized directly from vaporized acetonitrile over nickel-iron based catalysts, for oxygen reduction reaction (ORR), was investigated. The nitrogen content and specific surface area of N-CNFs can be controlled through the synthesis temperature (300-680 degrees C). The graphitization degree of N-CNFs also are significantly affected by the temperature, whereas the chemical compositions of nitrogen species are similar irrespective of the synthesis conditions. From measurement of the electrochemical double layer capacitance, the surface of N-CNFs is found to have stronger interaction with ions than undoped-carbon surfaces. Although N-CNFs show higher over-potential than Pt catalysts do, N-CNFs were observed to have a noticeable ORR activity, as opposed to the carbon samples without nitrogen doping. The activity dependency of N-CNFs on the content of the nitrogen with which they were doped is discussed, based on the experiment results. The single cell of the direct methanol fuel cell (DMFC) was tested to investigate the performance of a membrane-electrode assembly that includes N-CNFs as the cathode catalyst layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...