Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 17(12)2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29240695

ABSTRACT

In wireless sensor networks (WSNs), sensor nodes are deployed for collecting and analyzing data. These nodes use limited energy batteries for easy deployment and low cost. The use of limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless sensor networks. Efficient-energy management is important to extending the lifetime of the sensor nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on reducing the power consumed during data transmission. However, recent emergence of sensor nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable power management using dynamic power management. In the proposed approach, processor selection for a scheduling and mapping method between the tasks and processors is proposed to efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed approach compared to other existing methods.

2.
Sensors (Basel) ; 16(7)2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27399722

ABSTRACT

Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

3.
Sensors (Basel) ; 16(6)2016 Jun 11.
Article in English | MEDLINE | ID: mdl-27294941

ABSTRACT

Sensor fusion techniques have made a significant contribution to the success of the recently emerging mobile applications era because a variety of mobile applications operate based on multi-sensing information from the surrounding environment, such as navigation systems, fitness trackers, interactive virtual reality games, etc. For these applications, the accuracy of sensing information plays an important role to improve the user experience (UX) quality, especially with gyroscopes and accelerometers. Therefore, in this paper, we proposed a novel mechanism to resolve the gyro drift problem, which negatively affects the accuracy of orientation computations in the indirect Kalman filter based sensor fusion. Our mechanism focuses on addressing the issues of external feedback loops and non-gyro error elements contained in the state vectors of an indirect Kalman filter. Moreover, the mechanism is implemented in the device-driver layer, providing lower process latency and transparency capabilities for the upper applications. These advances are relevant to millions of legacy applications since utilizing our mechanism does not require the existing applications to be re-programmed. The experimental results show that the root mean square errors (RMSE) before and after applying our mechanism are significantly reduced from 6.3 × 10(-1) to 5.3 × 10(-7), respectively.

4.
Comput Math Methods Med ; 2015: 710326, 2015.
Article in English | MEDLINE | ID: mdl-26078780

ABSTRACT

Segmentation of regions of interest is a well-known problem in image segmentation. This paper presents a region-based image segmentation technique using active contours with signed pressure force (SPF) function. The proposed algorithm contemporaneously traces high intensity or dense regions in an image by evolving the contour inwards. In medical image modalities these high intensity or dense regions refer to tumor, masses, or dense tissues. The proposed method partitions an image into an arbitrary number of subregions and tracks down salient regions step by step. It is implemented by enforcing a new region-based SPF function in a traditional edge-based level set model. It partitions an image into subregions and then discards outer subregion and partitions inner region into two more subregions; this continues iteratively until a stopping condition is fulfilled. A Gaussian kernel is used to regularize the level set function, which not only regularizes it but also removes the need of computationally expensive reinitialization. The proposed segmentation algorithm has been applied to different images in order to demonstrate the accuracy, effectiveness, and robustness of the algorithm.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Computational Biology , Female , Humans , Mammography/statistics & numerical data , Models, Statistical , Radiographic Image Interpretation, Computer-Assisted/methods
5.
Sensors (Basel) ; 10(6): 5329-45, 2010.
Article in English | MEDLINE | ID: mdl-22219664

ABSTRACT

We propose novel algorithms for the timing correlation of streaming sensor data. The sensor data are assumed to have interval timestamps so that they can represent temporal uncertainties. The proposed algorithms can support efficient timing correlation for various timing predicates such as deadline, delay, and within. In addition to the classical techniques, lazy evaluation and result cache are utilized to improve the algorithm performance. The proposed algorithms are implemented and compared under various workloads.


Subject(s)
Algorithms , Biosensing Techniques/instrumentation , Data Interpretation, Statistical , Signal Processing, Computer-Assisted , Workload , Artificial Intelligence , Biosensing Techniques/statistics & numerical data , Efficiency , Humans , Probability , Signal Processing, Computer-Assisted/instrumentation , Time Factors , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...