Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257507

ABSTRACT

In ubiquitous healthcare systems, energy expenditure estimation based on wearable sensors such as inertial measurement units (IMUs) is important for monitoring the intensity of physical activity. Although several studies have reported data-driven methods to estimate energy expenditure during activities of daily living using wearable sensor signals, few have evaluated the performance while walking at various speeds and inclines. In this study, we present a hybrid model comprising a convolutional neural network (CNN) and long short-term memory (LSTM) to estimate the steady-state energy expenditure under various walking conditions based solely on IMU data. To implement and evaluate the model, we performed level/inclined walking and level running experiments on a treadmill. With regard to the model inputs, the performance of the proposed model based on fixed-size sequential data was compared with that of a method based on stride-segmented data under different conditions in terms of the sensor location, input sequence format, and neural network model. Based on the experimental results, the following conclusions were drawn: (i) the CNN-LSTM model using a two-second sequence from the IMU attached to the lower body yielded optimal performance, and (ii) although the stride-segmented data-based method showed superior performance, the performance difference between the two methods was not significant; therefore, the proposed model based on fixed-size sequential data may be considered more practical as it does not require heel-strike detection.


Subject(s)
Activities of Daily Living , Walking , Humans , Exercise , Energy Metabolism , Neural Networks, Computer
2.
Sensors (Basel) ; 22(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408121

ABSTRACT

In biomechanics, joint kinetics has an important role in evaluating the mechanical load of the joint and understanding its motor function. Although an optical motion capture (OMC) system has mainly been used to evaluate joint kinetics in combination with force plates, inertial motion capture (IMC) systems have recently been emerging in joint kinetic analysis due to their wearability and ubiquitous measurement capability. In this regard, numerous studies have been conducted to estimate joint kinetics using IMC-based wearable systems. However, these have not been comprehensively addressed yet. Thus, the aim of this review is to explore the methodology of the current studies on estimating joint kinetic variables by means of an IMC system. From a systematic search of the literature, 48 studies were selected. This paper summarizes the content of the selected literature in terms of the (i) study characteristics, (ii) methodologies, and (iii) study results. The estimation methods of the selected studies are categorized into two types: the inverse dynamics-based method and the machine learning-based method. While these two methods presented different characteristics in estimating the kinetic variables, it was demonstrated in the literature that both methods could be applied with good performance for the kinetic analysis of joints in different daily activities.


Subject(s)
Mechanical Phenomena , Wearable Electronic Devices , Biomechanical Phenomena , Kinetics , Motion
3.
Sensors (Basel) ; 22(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35336323

ABSTRACT

In biomechanics, estimating the relative position between two body segments using inertial and magnetic measurement units (IMMUs) is important in that it enables the capture of human motion in unconstrained environments. The relative position can be estimated using the segment orientation and segment-to-joint center (S2J) vectors where the S2J vectors are predetermined as constants under the assumption of rigid body segments. However, human body segments are not rigid bodies because they are easily affected by soft tissue artifacts (STAs). Therefore, the use of the constant S2J vectors is one of the most critical factors for the inaccurate estimation of relative position. To deal with this issue, this paper proposes a method of determining time-varying S2J vectors to reflect the deformation of the S2J vectors and thus to increase the estimation accuracy, in IMMU-based relative position estimation. For the proposed method, first, reference S2J vectors for learning needed to be collected. A regression method derived a function outputting S2J vectors based on specific physical quantities that were highly correlated with the deformation of S2J vectors. Subsequently, time-varying S2J vectors were determined from the derived function. The validation results showed that, in terms of the averaged root mean squared errors of four tests performed by three subjects, the proposed method (15.08 mm) provided a higher estimation accuracy than the conventional method using constant vectors (31.32 mm). This indicates the proposed method may effectively compensate for the effects of STAs and ultimately estimate more accurate relative positions. By providing STA-compensated relative positions between segments, the proposed method applied in a wearable motion tracking system can be useful in rehabilitation or sports sciences.


Subject(s)
Artifacts , Wearable Electronic Devices , Biomechanical Phenomena , Humans , Motion , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...