Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Anal Chim Acta ; 1314: 342799, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38876521

ABSTRACT

BACKGROUND: As a core enzyme in the base excision repair system, uracil DNA glycosylase (UDG) is indispensable in maintaining genomic integrity and normal cell cycles. Its abnormal activity intervenes in cancers and neurodegerative diseases. Previous UDG assays based on isothermal amplification and Clustered Regularly Interspaced Short Palindromic Repeats/Cas (CRISPR/Cas) system were fine in sensitivity, but exposed to complications in assay flow, time, and probe design. After isothermal amplification, a CRISPR/Cas reagent should be separately added with extra manual steps and its guide RNA (gRNA) should be designed, considering the presence of protospacer adjacent motif (PAM) site. RESULTS: We herein describe a UDG-REtarded CRISPR Amplification assay, termed 'URECA'. In URECA, isothermal nucleic acid (NA) amplification and CRISPR/Cas12a system were tightly combined to constitute a one-pot, isothermal CRISPR amplification system. Isothermal NA amplification for a UDG substrate (US) with uracil (U) bases was designed to activate and boost CRISPR/Cas12a reaction. Such scheme enabled us to envision that UDG would halt the isothermal CRISPR amplification reaction by excising U bases and messing up the US. Based on this principle, the assay detected the UDG activity down to 9.17 x 10-4 U/mL in 50 min. With URECA, we fulfilled the recovery test of UDG activities in plasma and urine with high precision and reproducibility and reliably determined UDG activities in cell extracts. Also, we verified its capability to screen candidate UDG inhibitors, showing its potentials in practical application as well as drug discovery. SIGNIFICANCE: URECA offers further merits: i) the assay is seamless. Following target recognition, the reactions proceed in one-step without any intervening steps, ii) probe design is simple. Unlike the conventional CRISPR/Cas12a-based assays, URECA does not consider the PAM site in probe design as Cas12a activation relies on instantaneous gRNA binding to single-stranded DNA strands. By rationally designing an enzyme substrate probe to be specific to other enzymes, while keeping a role as a template for isothermal CRISPR amplification, the detection principle of URECA will be expanded to devise biosensors for various enzymes of biological, clinical significance.


Subject(s)
CRISPR-Cas Systems , DNA Repair , Nucleic Acid Amplification Techniques , Uracil-DNA Glycosidase , Uracil-DNA Glycosidase/metabolism , Uracil-DNA Glycosidase/genetics , Humans , Nucleic Acid Amplification Techniques/methods , CRISPR-Cas Systems/genetics , Enzyme Assays/methods , Excision Repair
2.
Talanta ; 274: 125944, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38537347

ABSTRACT

In this study, we present a one-pot, one-step, label-free miRNA detection method through a structural transition of a specially designed dumbbell-shape probe, initiating a rolling circle transition (RCT). In principle, target miRNA binds to right loop of the dumbbell probe (DP), which allows structural change of the DP to circular form, exposing a sequence complementary to the T7 promoter (T7p) previously hidden within the stem. This exposure allows T7 RNA polymerase to initiate RCT, producing a repetitive Mango aptamer sequence. TO1-biotin, fluorescent dye, binds to the aptamer, inducing a detectable enhancement of fluorescence intensity. Without miR-141, the DP stays closed, RCT is prevented, and the fluorescence intensity remains low. By employing this novel strategy, target miRNA was successfully identified with a detection of 73 pM and a dynamic linear range of 0-10 nM. Additionally, the method developed enables one-pot, one-step, and label-free detection of miRNA, demonstrating potential for point-of-care testing (POCT) applications. Furthermore, the practical application of the designed technique was demonstrated by reliably detecting the target miRNA in the human serum sample. We also believe that the conceived approach could be widely used to detect not only miRNAs but also diverse biomolecules by simply replacing the detection probe.


Subject(s)
Aptamers, Nucleotide , MicroRNAs , Viral Proteins , MicroRNAs/analysis , MicroRNAs/blood , Humans , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Limit of Detection , Nucleic Acid Conformation , Spectrometry, Fluorescence , DNA-Directed RNA Polymerases/chemistry
3.
Biosensors (Basel) ; 13(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37998138

ABSTRACT

This study presents a technique for detecting 3'-5' exonuclease activity through the use of CRISPR/Cas12a. These enzymes, including 3'-5' exonuclease (Exo III), perform crucial roles in various cellular processes and are associated with life expectancy. However, imbalances in their expression can increase susceptibility to diseases such as cancer, particularly under prolonged stress. In this study, an activator sequence of CRISPR/Cas12a was constructed on the 5'-end of a hairpin probe (HP), forming a blunt end. When the 3'-end of the HP was hydrolyzed with Exo III activity, the activator sequence of Cas12a was exposed, which led to collateral cleavage of the DNA signal probe and generated a fluorescent signal, allowing sensitive and highly specific Exo III detection. This detection principle relied on the fact that Exo III exclusively cleaves the 3'-end mononucleotide of dsDNA and does not affect ssDNA. Based on this strategy, Exo III activity was successfully assayed at 0.0073 U/mL, demonstrating high sensitivity. In addition, this technique was used to screen candidate inhibitors of Exo III activity.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Phosphodiesterase I/genetics , Exodeoxyribonucleases , Limit of Detection , DNA , DNA Probes , Biosensing Techniques/methods
4.
Nanoscale ; 15(41): 16669-16674, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37801026

ABSTRACT

Overexpression of telomerase incites the abnormal proliferation of cancer cells. Thus, it has been regarded as a cancer biomarker and a potential therapeutic target. Existing assays suggest a promising sensing scheme to detect telomerase activity. However, they are complicated in terms of assay preparation and implementation. We herein report a Quenching-Exempt invader Signal Amplification Test, termed 'QUEST'. The assay leverages on a high turnover, specific cleaving enzyme, flap endonuclease I (FEN1), and graphene oxide (GO) for background (BG) filtering. In response to the target, FEN1 significantly boosts the signal with invader signal amplification. To distinguish the target signal, GO filters out the BG. It captures residual reporter invader probes (RP) to quench undesired signals. QUEST is straightforward without any pre-preparatory steps and washing/separation. Its probe design is simple and cost-effective. With QUEST, we investigated telomerase activities in various cell lines. Notably, we discriminated cancer cell lines from normal cell lines. In addition, a candidate inhibitor for telomerase was screened, which showed the promising potential of QUEST in real applications.


Subject(s)
Telomerase , Telomerase/metabolism , DNA Cleavage , Cell Line
5.
Int J Mol Sci ; 24(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37569706

ABSTRACT

We present a novel label-free colorimetric method for detecting exonuclease III (Exo III) activity using the peroxidase-mimicking activity of cerium oxide nanoparticles (nanoceria). Exo III, an enzyme that specifically catalyzes the stepwise removal of mononucleotides from the 3'-OH termini of double-stranded DNA, plays a significant role in various cellular and physiological processes, including DNA proofreading and repair. Malfunctions of Exo III have been associated with increased cancer risks. To assay the activity of Exo III, we applied the previous reports in that the peroxidase-mimicking activity of nanoceria is inhibited due to the aggregation induced by the electrostatic attraction between DNA and nanoceria. In the presence of Exo III, the substrate DNA (subDNA), which inhibits nanoceria's activity, is degraded, thereby restoring the peroxidase-mimicking activity of nanoceria. Consequently, the 3,3',5,5'-tetramethylbenzidine (TMB) substrate is oxidized, leading to a color change from colorless to blue, along with an increase in the absorbance intensity. This approach enabled us to reliably detect Exo III at a limit of detection (LOD) of 0.263 units/mL across a broad dynamic range from 3.1 to 400 units/mL, respectively, with an outstanding specificity. Since this approach does not require radiolabels, complex DNA design, or sophisticated experimental techniques, it provides a simpler and more feasible alternative to standard methods.


Subject(s)
Antioxidants , Colorimetry , Colorimetry/methods , DNA/genetics , Peroxidases
6.
Adv Sci (Weinh) ; 10(10): e2206872, 2023 04.
Article in English | MEDLINE | ID: mdl-36725305

ABSTRACT

CRISPR/Cas systems offer a powerful sensing mechanism to transduce sequence-specific information into amplified analytical signals. However, performing multiplexed CRISPR/Cas assays remains challenging and often requires complex approaches for multiplexed assays. Here, a hydrogel-based CRISPR/Cas12 system termed CLAMP (Cas-Loaded Annotated Micro-Particles) is described. The approach compartmentalizes the CRISPR/Cas reaction in spatially-encoded hydrogel microparticles (HMPs). Each HMP is identifiable by its face code and becomes fluorescent when target DNA is present. The assay is further streamlined by capturing HMPs inside a microfluidic device; the captured particles are then automatically recognized by a machine-learning algorithm. The CLAMP assay is fast, highly sensitive (attomolar detection limits with preamplification), and capable of multiplexing in a single-pot assay. As a proof-of-concept clinical application, CLAMP is applied to detect nucleic acid targets of human papillomavirus in cervical brushing samples.


Subject(s)
Nucleic Acids , Humans , Hydrogels , DNA , CRISPR-Cas Systems/genetics
7.
Theranostics ; 12(5): 1988-1998, 2022.
Article in English | MEDLINE | ID: mdl-35265194

ABSTRACT

Extracellular vesicles (EVs) carry information inherited from parental cells, having significant potential for disease diagnosis. In blood, however, EVs are outnumbered >104-fold by low density lipoproteins (LDLs), yet similar in size and density. These fundamental disadvantages often cause LDL spillover into EV isolates, thus confounding assay results. We hypothesized that EVs can be further separated from LDLs based on electric charge: EVs and LDLs have different lipid composition, which can lead to differential surface charge densities. To test this hypothesis, we modeled and quantified the surface charge of EVs and LDLs, and used the information to optimally separate EVs from LDLs via ion-exchange chromatography. Methods: We built an enhanced dual-mode chromatography (eDMC) device which performed i) size-exclusion to remove particles smaller than EVs and LDLs and ii) cation-exchange in an acidic elution to retain LDLs longer than EVs. The performance of the eDMC, in comparison to size-exclusion only, was evaluated by analyzing the yield and purity of the isolated EVs. Results: By measuring and modeling zeta potentials at different buffer pH, we estimated surface charge densities of EVs (-6.2 mC/m2) and LDLs (-3.6 mC/m2), revealing that EVs are more negatively charged than LDLs. Furthermore, the charge difference between EVs and LDLs was maximal at a weak acidic condition (pH = 6.4). By applying these findings, we optimized eDMC operation to enrich EVs directly from plasma, depleting >99.8% of LPPs within 30 min. Minimizing LDL contamination improved analytical signals in EV molecular assays, including single vesicle imaging, bulk protein measurements, and mRNA detection. Conclusions: These developments will promote the translational value of the dual-mode separation - a fast, equipment-free, and non-biased way for EV isolation from plasma samples.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/metabolism , Lipoproteins, LDL/metabolism , Plasma/metabolism , Proteomics , RNA, Messenger/metabolism
8.
Life (Basel) ; 12(2)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35207590

ABSTRACT

Cancer metastasis is directly related to the survival rate of cancer patients. Although cancer metastasis proceeds by the movement of cancer cells, it is fundamentally caused by its resistance to anoikis, a mechanism of apoptosis caused by the loss of adhesion of cancer cells. Therefore, it was found that inhibiting cancer migration and reducing anoikis resistance are important for cancer suppression, and natural compounds can effectively control it. Among them, Ribes fasciculatum, which has been used as a medicinal plant, was confirmed to have anticancer potential, and experiments were conducted to prove various anticancer effects by extracting Ribes fasciculatum (RFE). Through various experiments, it was observed that RFE induces apoptosis of AGS gastric cancer cells, arrests the cell cycle, induces oxidative stress, and reduces mobility. It was also demonstrated that anoikis resistance was attenuated through the downregulation of proteins, such as epidermal growth factor receptor (EGFR). Moreover, the anticancer effect of RFE depends upon the increase in p53 expression, suggesting that RFE is suitable for the development of p53-targeted anticancer materials. Moreover, through xenotransplantation, it was found that the anticancer effect of RFE confirmed in vitro was continued in vivo.

9.
Biosens Bioelectron ; 196: 113689, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34688112

ABSTRACT

We herein describe rapid and accurate clinical testing for COVID-19 by nicking and extension chain reaction system-based amplification (NESBA), an ultrasensitive version of NASBA. The primers to identify SARS-CoV-2 viral RNA were designed to additionally contain the nicking recognition sequence at the 5'-end of conventional NASBA primers, which would enable nicking enzyme-aided exponential amplification of T7 RNA promoter-containing double-stranded DNA (T7DNA). As a consequence of this substantially enhanced amplification power, the NESBA technique was able to ultrasensitively detect SARS-CoV-2 genomic RNA (gRNA) down to 0.5 copies/µL (= 10 copies/reaction) for both envelope (E) and nucleocapsid (N) genes within 30 min under isothermal temperature (41 °C). When the NESBA was applied to test a large cohort of clinical samples (n = 98), the results fully agreed with those from qRT-PCR and showed the excellent accuracy by yielding 100% clinical sensitivity and specificity. By employing multiple molecular beacons with different fluorophore labels, the NESBA was further modulated to achieve multiplex molecular diagnostics, so that the E and N genes of SARS-CoV-2 gRNA were simultaneously assayed in one-pot. By offering the superior analytical performances over the current qRT-PCR, the isothermal NESBA technique could serve as very powerful platform technology to realize the point-of-care (POC) diagnosis for COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19 Testing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
10.
Chem Commun (Camb) ; 58(14): 2279-2282, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34931214

ABSTRACT

We herein describe an ultrasensitive isothermal strategy to detect miRNAs in a multiplexed manner by utilizing a self-priming hairpin-triggered cascade reaction and the adsorption properties of graphene oxide (GO). In principle, a self-priming hairpin probe (SHP) was designed to be opened through binding to the target miRNA and rearranged to serve as a primer. The following extension displaced the target miRNA to be recycled for opening another SHP and produced a double-stranded (ds) SHP with a longer stem region. The nicking enzyme recognition site within the ds SHP was then subjected to continuous repeated nicking and extension reactions, consequently producing a large amount of the trigger sequence. In the second reaction phase, the trigger also transformed another single-stranded (ss) target template probe (TTP) into ds TTP and simultaneously produced numerous target mimic strands (Target') in the same manner, which could activate the first reaction phase, mimicking the target miRNA. Since the ss portions of the two probes were all transformed to the ds forms (ds SHP and ds TTP), they are resistant to the adsorption by graphene oxide (GO) and then emitted intense fluorescence after the application of GO while the ss forms of the two probes produced a negligible fluorescence signal without the target miRNAs. Based on this unique design principle, we were able to simultaneously identify multiple target miRNAs very sensitively down to attomolar levels (42.63 aM for miRNA let-7a, 13.08 aM for miRNA-141, and 10.14 aM for miRNA-98) within 30 min.


Subject(s)
MicroRNAs/genetics , Nucleic Acid Amplification Techniques , Adsorption , Fluorescence , Graphite/chemistry , Humans
11.
Acc Chem Res ; 54(21): 3991-4000, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34677927

ABSTRACT

The modern healthcare system faces an unrelenting threat from microorganisms, as evidenced by global outbreaks of new viral diseases, emerging antimicrobial resistance, and the rising incidence of healthcare-associated infections (HAIs). An effective response to these threats requires rapid and accurate diagnostic tests that can identify causative pathogens at the point of care (POC). Such tests could eliminate diagnostic uncertainties, facilitating patient triaging, minimizing the empiric use of antimicrobial drugs, and enabling targeted treatments. Current standard methods, however, often fail to meet the needs of rapid diagnosis in POC settings. Culture-based assays entail long processing times and require specialized laboratory infrastructure; nucleic acid (NA) tests are often limited to centralized hospitals due to assay complexity and high costs. Here we discuss two new POC tests developed in our groups to enable the rapid diagnosis of infection. The first is nanoPCR that takes advantages of core-shell magnetoplasmonic nanoparticles (MPNs): (i) Au shell significantly accelerates thermocycling via volumetric, plasmonic light-to-heat conversion and (ii) a magnetic core enables sensitive in situ fluorescent detection via magnetic clearing. By adopting a Ferris wheel module, the system expedites multisamples in parallel with a minimal setup. When applied to COVID-19 diagnosis, nanoPCR detected SARS-CoV-2 RNA down to 3.2 copy/µL within 17 min. In particular, nanoPCR diagnostics accurately identified COVID-19 cases in clinical samples (n = 150), validating its clinical applicability. The second is a polarization anisotropy diagnostic (PAD) system that exploits the principle of fluorescence polarization (FP) as a detection modality. Fluorescent probes were designed to alter their molecular weight upon recognizing target NAs. This event modulates the probes' tumbling rate (Brownian motion), which leads to changes in FP. The approach is robust against environmental noise and benefits from the ratiometric nature of the signal readout. We applied PAD to detect clinically relevant HAI bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus). The PAD assay demonstrated detection sensitivity down to the single bacterium level and determined both drug resistance and virulence status. In summary, these new tests have the potential to become powerful tools for rapid diagnosis in the infectious disease space. They do not require highly skilled personnel or labor-intensive analyses, and the assays are quick and cost-effective. These attributes will make nanoPCR and PAD well-aligned with a POC workflow to aid physicians to initiate prompt and informed patient treatment.


Subject(s)
Bacterial Infections/diagnosis , COVID-19 Testing , COVID-19/diagnosis , Fluorescence Polarization , Nanotechnology , Polymerase Chain Reaction , Fluorescent Dyes/chemistry , Humans , Point-of-Care Systems , RNA, Viral/genetics , SARS-CoV-2/genetics
12.
Biosens Bioelectron ; 191: 113444, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34175646

ABSTRACT

We herein describe a novel method to identify thyroid hormone (TH)/thyroid hormone receptor (TR) interaction, termed aptamer-assisted protein-induced fluorescence enhancement (AptPIFE). In this method, a detection probe consisting of an RNA strand incorporating TH-specific aptamer and a Cy3-labeled DNA strand holds TH in close proximity to Cy3. The corresponding TR then binds to the TH near Cy3, consequently stimulating Cy3 to emit a significantly enhanced fluorescence through PIFE phenomenon. Based on this simple yet efficient design principle, we successfully identified the interaction of TH with TR within 10 min, down to 0.37 pM with excellent specificity. The practical and robust applicability of this method was also successfully validated by properly screening TR antagonists and reliably quantifying TH present in real clinical serum samples from patients with hyperthyroidism and healthy volunteers.


Subject(s)
Biosensing Techniques , Receptors, Thyroid Hormone , DNA , Humans , Proteins , Thyroid Hormones
13.
Biosens Bioelectron ; 178: 113049, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33540323

ABSTRACT

Prompt diagnosis, patient isolation, and contact tracing are key measures to contain the coronavirus disease 2019 (COVID-19). Molecular tests are the current gold standard for COVID-19 detection, but are carried out at central laboratories, delaying treatment and control decisions. Here we describe a portable assay system for rapid, onsite COVID-19 diagnosis. Termed CODA (CRISPR Optical Detection of Anisotropy), the method combined isothermal nucleic acid amplification, activation of CRISPR/Cas12a, and signal generation in a single assay, eliminating extra manual steps. Importantly, signal detection was based on the ratiometric measurement of fluorescent anisotropy, which allowed CODA to achieve a high signal-to-noise ratio. For point-of-care operation, we built a compact, standalone CODA device integrating optoelectronics, an embedded heater, and a microcontroller for data processing. The developed system completed SARS-CoV-2 RNA detection within 20 min of sample loading; the limit of detection reached 3 copy/µL. When applied to clinical samples (10 confirmed COVID-19 patients; 10 controls), the rapid CODA test accurately classified COVID-19 status, in concordance with gold-standard clinical diagnostics.


Subject(s)
Biosensing Techniques/methods , COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Fluorescence Polarization/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Biosensing Techniques/instrumentation , Biosensing Techniques/statistics & numerical data , COVID-19/virology , COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/statistics & numerical data , CRISPR-Cas Systems , Equipment Design , Fluorescence Polarization/instrumentation , Fluorescence Polarization/statistics & numerical data , Humans , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/statistics & numerical data , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/statistics & numerical data , Pandemics , Point-of-Care Systems/statistics & numerical data , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio
15.
Nat Biomed Eng ; 4(12): 1159-1167, 2020 12.
Article in English | MEDLINE | ID: mdl-33273713

ABSTRACT

The diagnosis of severe acute respiratory syndrome 2 (SARS-CoV-2) infection by quantitative PCR with reverse transcription (RT-qPCR) typically involves bulky instrumentation in centralized laboratories and an assay time of 1-2 h. Here, we show that SARS-CoV-2 RNA can be detected in 17 min via a portable device integrating reverse transcription, fast thermocycling (via plasmonic heating through magneto-plasmonic nanoparticles) and in situ fluorescence detection following magnetic clearance of the nanoparticles. The device correctly classified all nasopharyngeal, oropharyngeal and sputum samples from 75 patients with COVID-19 and 75 healthy controls, with good concordance in fluorescence intensity with standard RT-qPCR (Pearson coefficients > 0.7 for the N1, N2 and RPP30 genes). Fast, portable and automated nucleic acid detection should facilitate testing at the point of care.

16.
Analyst ; 145(16): 5578-5583, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32627768

ABSTRACT

We herein describe a portable glucose meter (PGM)-utilized label-free and washing-free method for the facile determination of telomerase activity that relies on the kinase-catalyzed cascade enzymatic reaction (KCER) that transduces the telomerase activity to the glucose level. In the sensor, the telomerase that elongates telomere sequences ((TTAGGG)n) from the 3'-terminus of telomerase substrate primer (TSP) consumes deoxynucleoside triphosphate (dNTP), which serves as a phosphate source for KCER promoted by hexokinase and pyruvate kinase. Thus, the presence of telomerase protects KCER from working effectively, resulting in the maintenance of an initial, high glucose level that is readily determined using hand-held PGM. With this strategy, the telomerase activities in various types of cell lines were successfully determined with high sensitivity. Furthermore, the ability of this method to screen candidate inhibitors for telomerase activity was also verified.


Subject(s)
Biosensing Techniques , Telomerase , Cell Line , Glucose , Telomerase/metabolism , Telomere
17.
Int J Mol Sci ; 21(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532118

ABSTRACT

Clubroot resistance is an economically important trait in Brassicaceae crops. Although many quantitative trait loci (QTLs) for clubroot resistance have been identified in Brassica, disease-related damage continues to occur owing to differences in host variety and constant pathogen variation. Here, we investigated the inheritance of clubroot resistance in a double haploid population developed by crossing clubroot resistant and susceptible lines "09CR500" and "09CR501", respectively. The resistance of "09CR500" to Plasmodiophora brassicae pathotype "Banglim" was controlled as a single dominant gene, with the segregation of resistance and susceptibility being nearly 1:1. PbBrA08Banglim was identified as having a logarithm of odds value of 7.9-74.8, and a phenotypic variance of 26.0-97.1% with flanking marker "09CR.11390652" in A08. After aligning QTL regions to the B. rapa reference genome, 11 genes were selected as candidates. PbBrA08Banglim was located near Crr1, CRs, and Rcr9 loci, but differences were validated by marker analysis, gene structural variations, and gene expression levels, as well as phenotypic responses to the pathotype. Genotyping using the "09CR.11390652" marker accurately distinguished the Banglim-resistance phenotypes in the double haploid population. Thus, the developed marker will be useful in Brassica breeding programs, marker-assisted selection, and gene pyramiding to identify and develop resistant cultivars.


Subject(s)
Brassica rapa/genetics , Disease Resistance/genetics , Plant Diseases/parasitology , Quantitative Trait Loci , Brassica rapa/parasitology , Gene Expression Regulation, Plant , Genes, Dominant , Genes, Plant , Genome-Wide Association Study , Plant Diseases/genetics , Plant Roots/parasitology , Plasmodiophorida/pathogenicity , Reproducibility of Results
18.
Anal Chim Acta ; 1114: 7-14, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32359517

ABSTRACT

We herein describe Hairpin probe-mediated Isothermal Amplification (HIAmp), a novel isothermal method to detect a target nucleic acid. This method employs a hairpin probe (HP) designed to be opened through binding to the target nucleic acid. Upon opening of the HP, the primer binds to the free stem of the opened HP followed by its extension by DNA polymerase, consequently displacing and recycling the target nucleic acid to open another HP and producing an intermediate product (IP) containing a nicking site. The IP then continuously produces a trigger probe (TP), which subsequently initiates the isothermal amplification cycles in two separate ways by binding to either the intact HP or the overhang region of the IP. Through the following well-designed interconnected pathways, a large amount of final double-stranded DNA products (FPs) is produced and a high fluorescent signal is generated from the duplex-specific fluorescent dye, SYBR Green I. By employing this isothermal strategy, target DNA was very sensitively detected down to 64 zmol with the capability to discriminate the target DNA against non-specific DNAs. This work would provide remarkable insight into the design of a new DNA network enabling isothermal amplification.


Subject(s)
DNA/analysis , Nucleic Acid Amplification Techniques , Benzothiazoles , Diamines , Fluorescent Dyes/chemistry , Organic Chemicals/chemistry , Quinolines
19.
Int J Mol Sci ; 21(8)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326209

ABSTRACT

Reddish purple Chinese cabbage (RPCC) is a popular variety of Brassica rapa (AA = 20). It is rich in anthocyanins, which have many health benefits. We detected novel anthocyanins including cyanidin 3-(feruloyl) diglucoside-5-(malonoyl) glucoside and pelargonidin 3-(caffeoyl) diglucoside-5-(malonoyl) glucoside in RPCC. Analyses of transcriptome data revealed 32,395 genes including 3345 differentially expressed genes (DEGs) between 3-week-old RPCC and green Chinese cabbage (GCC). The DEGs included 218 transcription factor (TF) genes and some functionally uncharacterized genes. Sixty DEGs identified from the transcriptome data were analyzed in 3-, 6- and 9-week old seedlings by RT-qPCR, and 35 of them had higher transcript levels in RPCC than in GCC. We detected cis-regulatory motifs of MYB, bHLH, WRKY, bZIP and AP2/ERF TFs in anthocyanin biosynthetic gene promoters. A network analysis revealed that MYB75, MYB90, and MYBL2 strongly interact with anthocyanin biosynthetic genes. Our results show that the late biosynthesis genes BrDFR, BrLDOX, BrUF3GT, BrUGT75c1-1, Br5MAT, BrAT-1, BrAT-2, BrTT19-1, and BrTT19-2 and the regulatory MYB genes BrMYB90, BrMYB75, and BrMYBL2-1 are highly expressed in RPCC, indicative of their important roles in anthocyanin biosynthesis, modification, and accumulation. Finally, we propose a model anthocyanin biosynthesis pathway that includes the unique anthocyanin pigments and genes specific to RPCC.


Subject(s)
Brassica/genetics , Gene Expression Profiling , Pigmentation/genetics , Transcriptome , Anthocyanins/biosynthesis , Anthocyanins/genetics , Brassica/chemistry , Computational Biology/methods , Gene Expression Regulation, Plant , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Humans , Plant Leaves/chemistry , Promoter Regions, Genetic , Transcription Factors/genetics
20.
Biotechnol J ; 15(3): e1900420, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31657505

ABSTRACT

Herein, a novel enzyme-free and label-free strategy for colorimetric assay of uracil DNA glycosylase (UDG) activity, which relies on a target-activated toehold-mediated strand displacement (TMSD) circuit is described. The strategy employs a detection duplex probe composed of a uracil-containing strand (US) and a catalyst strand (CS). UDG present in a sample will cleave uracil bases within US and destabilize the detection duplex probe, which then leads to the dissociation of the detection duplex, releasing CS. The free CS promotes the TMSD reaction, consequently liberating a G-quadruplex DNAzyme strand (GS) which is initially caged by a blocker strand (BS). Notably, a fuel strand (FS) is supplemented to recycle the CS to promote another cycle of TMSD reaction. As a consequence, a large number of GSs are activated by UDG activity and a distinct colorimetric signal is produced through the oxidation of ABTS promoted by the peroxidase mimicking activity of the liberated GSs. Based on this design principle, UDG activity down to 0.006 U mL-1 with excellent selectivity is successfully determined. The practical applicability of this assay is also demonstrated by reliably determining UDG activities in human serum.


Subject(s)
Colorimetry/methods , Enzyme Assays/methods , Uracil-DNA Glycosidase/metabolism , G-Quadruplexes
SELECTION OF CITATIONS
SEARCH DETAIL
...