Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Psychiatry Investig ; 21(6): 601-609, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38960437

ABSTRACT

OBJECTIVE: This study aimed to elucidate the distinct response patterns exhibited by patients diagnosed with bipolar disorder (BD) and those with major depressive disorder (MDD) through the application of the short version of the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego Autoquestionnaire (TEMPS-A-SV). METHODS: A total of 2,458 participants consisting of patients with MDD (n=288), BD (BD I, n=111; BD II, n=427), and control group (n=1,632) completed the TEMPS-A-SV. The response patterns of the participants were classified into distinct profiles using latent profile analysis. The study further examined the impact of covariates such as age, sex, and diagnostic group on derived latent profile memberships. RESULTS: The following three latent profiles were identified: High Affective Temperament Group (17.86%), Low Affective Temperament Group (41.25%), and Middle Affective Temperament Group (40.89%). Compared with the patient group with MDD and BD, the control group was more likely to belong in the Low Affective Temperament Group, which showed a higher score on hyperthymic temperament than the Middle Affective Temperament Group. Furthermore, compared with the patients with BD, the MDD patients were more likely to be in the Low Affective Temperament Group rather than the Middle Affective Temperament Group. CONCLUSION: These results indicate that different affective temperaments exist between patients with MDD and BD. Attempting to classify response patterns using the TEMPS-A-SV can help diagnose MDD and BD correctly.

2.
Sci Rep ; 14(1): 10080, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698015

ABSTRACT

Device engineering based on computer-aided simulations is essential to make silicon (Si) quantum bits (qubits) be competitive to commercial platforms based on superconductors and trapped ions. Combining device simulations with the Bayesian optimization (BO), here we propose a systematic design approach that is quite useful to procure fast and precise entangling operations of qubits encoded to electron spins in electrode-driven Si quantum dot (QD) systems. For a target problem of the controlled-X (CNOT) logic operation, we employ BO with the Gaussian process regression to evolve design factors of a Si double QD system to the ones that are optimal in terms of speed and fidelity of a CNOT logic driven by a single microwave pulse. The design framework not only clearly contributes to cost-efficient securing of solutions that enhance performance of the target quantum operation, but can be extended to implement more complicated logics with Si QD structures in experimentally unprecedented ways.

3.
Plant Cell Physiol ; 65(6): 1065-1079, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38501734

ABSTRACT

Grass xylan consists of a linear chain of ß-1,4-linked xylosyl residues that often form domains substituted only with either arabinofuranose (Araf) or glucuronic acid (GlcA)/methylglucuronic acid (MeGlcA) residues, and it lacks the unique reducing end tetrasaccharide sequence found in dicot xylan. The mechanism of how grass xylan backbone elongation is initiated and how its distinctive substitution pattern is determined remains elusive. Here, we performed biochemical characterization of rice xylan biosynthetic enzymes, including xylan synthases, glucuronyltransferases and methyltransferases. Activity assays of rice xylan synthases demonstrated that they required short xylooligomers as acceptors for their activities. While rice xylan glucuronyltransferases effectively glucuronidated unsubstituted xylohexaose acceptors, they transferred little GlcA residues onto (Araf)-substituted xylohexaoses and rice xylan 3-O-arabinosyltransferase could not arabinosylate GlcA-substituted xylohexaoses, indicating that their intrinsic biochemical properties may contribute to the distinctive substitution patterns of rice xylan. In addition, we found that rice xylan methyltransferase exhibited a low substrate binding affinity, which may explain the partial GlcA methylation in rice xylan. Furthermore, immunolocalization of xylan in xylem cells of both rice and Arabidopsis showed that it was deposited together with cellulose in secondary walls without forming xylan-rich nanodomains. Together, our findings provide new insights into the biochemical mechanisms underlying xylan backbone elongation and substitutions in grass species.


Subject(s)
Oryza , Plant Proteins , Xylans , Xylans/metabolism , Oryza/genetics , Oryza/enzymology , Oryza/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Pentosyltransferases/metabolism , Pentosyltransferases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Xylem/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Glucuronosyltransferase/metabolism , Glucuronosyltransferase/genetics
4.
Plant Physiol ; 193(2): 1109-1125, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37341542

ABSTRACT

ß-Galactosidases (Bgals) remove terminal ß-D-galactosyl residues from the nonreducing ends of ß-D-galactosidases and oligosaccharides. Bgals are present in bacteria, fungi, animals, and plants and have various functions. Despite the many studies on the evolution of BGALs in plants, their functions remain obscure. Here, we identified rice (Oryza sativa) ß-galactosidase9 (OsBGAL9) as a direct target of the heat stress-induced transcription factor SPOTTED-LEAF7 (OsSPL7), as demonstrated by protoplast transactivation analysis and yeast 1-hybrid and electrophoretic mobility shift assays. Knockout plants for OsBGAL9 (Osbgal9) showed short stature and growth retardation. Histochemical ß-glucuronidase (GUS) analysis of transgenic lines harboring an OsBGAL9pro:GUS reporter construct revealed that OsBGAL9 is mainly expressed in internodes at the mature stage. OsBGAL9 expression was barely detectable in seedlings under normal conditions but increased in response to biotic and abiotic stresses. Ectopic expression of OsBGAL9 enhanced resistance to the rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, as well as tolerance to cold and heat stress, while Osbgal9 mutant plants showed the opposite phenotypes. OsBGAL9 localized to the cell wall, suggesting that OsBGAL9 and its plant putative orthologs likely evolved functions distinct from those of its closely related animal enzymes. Enzyme activity assays and analysis of the cell wall composition of OsBGAL9 overexpression and mutant plants indicated that OsBGAL9 has activity toward galactose residues of arabinogalactan proteins (AGPs). Our study clearly demonstrates a role for a member of the BGAL family in AGP processing during plant development and stress responses.


Subject(s)
Oryza , Xanthomonas , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Heat Shock Transcription Factors/genetics , Genes, Plant , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Xanthomonas/physiology , Plant Diseases/genetics , Plant Diseases/microbiology
5.
Plant J ; 112(1): 193-206, 2022 10.
Article in English | MEDLINE | ID: mdl-35959609

ABSTRACT

Grass xylan, the major hemicellulose in both primary and secondary cell walls, is heavily decorated with α-1,3-linked arabinofuranosyl (Araf) residues that may be further substituted at O-2 with xylosyl (Xyl) or Araf residues. Although xylan 3-O-arabinosyltransferases (XATs) catalyzing 3-O-Araf addition onto xylan have been characterized, glycosyltransferases responsible for the transfer of 2-O-Xyl or 2-O-Araf onto 3-O-Araf residues of xylan to produce the Xyl-Araf and Araf-Araf disaccharide side chains remain to be identified. In this report, we showed that a rice GT61 member, named OsXAXT1 (xylan arabinosyl 2-O-xylosyltransferase 1) herein, was able to mediate the addition of Xyl-Araf disaccharide side chains onto xylan when heterologously co-expressed with OsXAT2 in the Arabidopsis gux1/2/3 (glucuronic acid substitution of xylan 1/2/3) triple mutant that lacks any glycosyl substitutions. Recombinant OsXAXT1 protein expressed in human embryonic kidney 293 cells exhibited a xylosyltransferase activity catalyzing the addition of Xyl from UDP-Xyl onto arabinosylated xylooligomers. Consistent with its function as a xylan arabinosyl 2-O-xylosyltransferase, CRISPR-Cas9-mediated mutations of the OsXAXT1 gene in transgenic rice plants resulted in a reduction in the level of Xyl-Araf disaccharide side chains in xylan. Furthermore, we revealed that XAXT1 close homologs from several other grass species, including switchgrass, maize, and Brachypodium, possessed the same functions as OsXAXT1, indicating functional conservation of XAXTs in grass species. Together, our findings establish that grass XAXTs are xylosyltransferases catalyzing Xyl transfer onto O-2 of Araf residues of xylan to form the Xyl-Araf disaccharide side chains, which furthers our understanding of genes involved in xylan biosynthesis.


Subject(s)
Arabidopsis , Oryza , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Wall/metabolism , Disaccharides/analysis , Disaccharides/metabolism , Glucuronic Acid/analysis , Glucuronic Acid/chemistry , Glucuronic Acid/metabolism , Glycosyltransferases/metabolism , Humans , Oryza/genetics , Oryza/metabolism , Pentosyltransferases , Plants, Genetically Modified/metabolism , Uridine Diphosphate/metabolism , Xylans/metabolism , UDP Xylose-Protein Xylosyltransferase
6.
Int J Mol Sci ; 23(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35163642

ABSTRACT

Artificial pigmentation of apple fruits has been intensely evaluated to generate less pigmented red apples, which are profitable because of the changes in fruit quality. In this study, we analyzed the diversity of flavonoids and the patterns of flavonoid metabolic gene expression under light irradiation with or without methyl jasmonate (MeJA) treatment in immature (S1) and color-turning (S2) staged 'Fuji' apples. Further, we assessed the metabolic regulation at the gene level between anthocyanin and flavonol in light-responsive apple skins. UV-B exposure within 3 days was found to significantly stimulate anthocyanin accumulation in apple skin compared to other light exposure. S1 skin was more sensitive to UV-B and MeJA treatment, in the aspect of indaein accumulation. The enhancement of apple pigmentation following treatment with adequate levels of UV-B and MeJA was maximized at approximately 72 h. Red (range from 4.25 to 17.96 µg·g-1 DW), blue (range from 4.59 to 9.17 µg·g-1 DW) and UV-A (range from 3.98 to 19.12 µg·g-1 DW) lights contributed to the induction of idaein content. Most genes related to the flavonoid pathways increased their expression under UV-B exposure, including the gene expression of the transcription factor, MdMYB10, a well-known upstream factor of flavonoid biosynthesis in apples. The boosted upregulation of MdMYB10, MdCHS, MdF3H MdLDOX, and MdUFGT genes due to MeJA in UV-B was found and may contribute the increase of idaein. UV-A and UV-B caused higher quercetin glycoside content in both S1 and S2 apple skins than longer wavelengths, resulting in significant increases in quercetin-3-O-galactoside and quercetin-3-O-glucoside. These results suggest that the application of adequate UV-B with MeJA in less-pigmented postharvest apples will improve apple color quality within a short period.


Subject(s)
Acetates/metabolism , Anthocyanins/metabolism , Cyclopentanes/metabolism , Flavonoids/metabolism , Fruit , Malus , Oxylipins/metabolism , Fruit/growth & development , Fruit/metabolism , Gene Expression Regulation, Plant , Malus/growth & development , Malus/metabolism , Pigmentation , Ultraviolet Rays
7.
J Exp Bot ; 73(3): 784-800, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34570888

ABSTRACT

Glycoside hydrolase family1 ß-glucosidases play a variety of roles in plants, but their in planta functions are largely unknown in rice (Oryza sativa). In this study, the biological function of Os12BGlu38, a rice ß-glucosidase, expressed in bicellular to mature pollen, was examined. Genotype analysis of progeny of the self-fertilized heterozygous Os12BGlu38 T-DNA mutant, os12bglu38-1, found no homozygotes and a 1:1 ratio of wild type to heterozygotes. Reciprocal cross analysis demonstrated that Os12BGlu38 deficiency cannot be inherited through the male gamete. In cytological analysis, the mature mutant pollen appeared shrunken and empty. Histochemical staining and TEM showed that mutant pollen lacked intine cell wall, which was rescued by introduction of wild-type Os12BGlu38 genomic DNA. Metabolite profiling analysis revealed that cutin monomers and waxes, the components of the pollen exine layer, were increased in anthers carrying pollen of os12bglu38-1 compared with wild type and complemented lines. Os12BGlu38 fused with green fluorescent protein was localized to the plasma membrane in rice and tobacco. Recombinant Os12BGlu38 exhibited ß-glucosidase activity on the universal substrate p-nitrophenyl ß-d-glucoside and some oligosaccharides and glycosides. These findings provide evidence that function of a plasma membrane-associated ß-glucosidase is necessary for proper intine development.


Subject(s)
Oryza , Cell Wall/metabolism , Fertility , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/metabolism , beta-Glucosidase/genetics , beta-Glucosidase/metabolism
8.
Int J Mol Sci ; 22(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34575913

ABSTRACT

Caffeoyl shikimate esterase (CSE) has been shown to play an important role in lignin biosynthesis in plants and is, therefore, a promising target for generating improved lignocellulosic biomass crops for sustainable biofuel production. Populus spp. has two CSE genes (CSE1 and CSE2) and, thus, the hybrid poplar (Populus alba × P. glandulosa) investigated in this study has four CSE genes. Here, we present transgenic hybrid poplars with knockouts of each CSE gene achieved by CRISPR/Cas9. To knockout the CSE genes of the hybrid poplar, we designed three single guide RNAs (sg1-sg3), and produced three different transgenic poplars with either CSE1 (CSE1-sg2), CSE2 (CSE2-sg3), or both genes (CSE1/2-sg1) mutated. CSE1-sg2 and CSE2-sg3 poplars showed up to 29.1% reduction in lignin deposition with irregularly shaped xylem vessels. However, CSE1-sg2 and CSE2-sg3 poplars were morphologically indistinguishable from WT and showed no significant differences in growth in a long-term living modified organism (LMO) field-test covering four seasons. Gene expression analysis revealed that many lignin biosynthetic genes were downregulated in CSE1-sg2 and CSE2-sg3 poplars. Indeed, the CSE1-sg2 and CSE2-sg3 poplars had up to 25% higher saccharification efficiency than the WT control. Our results demonstrate that precise editing of CSE by CRISPR/Cas9 technology can improve lignocellulosic biomass without a growth penalty.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Lignin/metabolism , Populus/genetics , Populus/metabolism , Amino Acid Sequence , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Chimera , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Plants, Genetically Modified , Xylem/metabolism
9.
New Phytol ; 231(4): 1496-1509, 2021 08.
Article in English | MEDLINE | ID: mdl-33908063

ABSTRACT

Secondary cell wall biosynthesis has been shown to be regulated by a suite of transcription factors. Here, we identified a new xylem vessel-specific NAC domain transcription factor, secondary wall-associated NAC domain protein5 (SND5), in Arabidopsis thaliana and studied its role in regulating secondary wall biosynthesis. We showed that the expression of SND5 and its close homolog, SND4/ANAC075, was specifically associated with secondary wall-containing cells and dominant repression of their functions severely reduced secondary wall thickening in these cells. Overexpression of SND4/5 as well as their homologs SND2/3 fused with the activation domain of the viral protein VP16 led to ectopic secondary wall deposition in cells that are normally parenchymatous. SND2/3/4/5 regulated the expression of the same downstream target genes as do the secondary wall NAC master switches (SWNs) by binding to and activating the secondary wall NAC binding elements (SNBEs). Furthermore, we demonstrated that the poplar (Populus trichocarpa) orthologs of SND2/3/4/5 also activated SNBEs and regulated secondary wall biosynthesis during wood formation. Together, these findings indicate that SND2/3/4/5 and their poplar orthologs regulate the expression of secondary wall-associated genes through activating SNBEs and they are positioned at an upper level in the SWN-mediated transcriptional network.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Wall , Populus , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Xylem/metabolism
10.
Int J Mol Sci ; 21(14)2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32650624

ABSTRACT

Although cell wall dynamics, particularly modification of homogalacturonan (HGA, a major component of pectin) during pollen tube growth, have been extensively studied in dicot plants, little is known about how modification of the pollen tube cell wall regulates growth in monocot plants. In this study, we assessed the role of HGA modification during elongation of the rice pollen tube by adding a pectin methylesterase (PME) enzyme or a PME-inhibiting catechin extract (Polyphenon 60) to in vitro germination medium. Both treatments led to a severe decrease in the pollen germination rate and elongation. Furthermore, using monoclonal antibodies toward methyl-esterified and de-esterified HGA epitopes, it was found that exogenous treatment of PME and Polyphenon 60 resulted in the disruption of the distribution patterns of low- and high-methylesterified pectins upon pollen germination and during pollen tube elongation. Eleven PMEs and 13 PME inhibitors (PMEIs) were identified by publicly available transcriptome datasets and their specific expression was validated by qRT-PCR. Enzyme activity assays and subcellular localization using a heterologous expression system in tobacco leaves demonstrated that some of the pollen-specific PMEs and PMEIs possessed distinct enzymatic activities and targeted either the cell wall or other compartments. Taken together, our findings are the first line of evidence showing the essentiality of HGA methyl-esterification status during the germination and elongation of pollen tubes in rice, which is primarily governed by the fine-tuning of PME and PMEI activities.


Subject(s)
Oryza/genetics , Pectins/genetics , Plant Proteins/genetics , Pollen Tube/genetics , Carboxylic Ester Hydrolases/genetics , Cell Wall/drug effects , Cell Wall/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Germination/drug effects , Germination/genetics , Oryza/drug effects , Plant Leaves/drug effects , Plant Leaves/genetics , Pollen Tube/drug effects , Polyphenols/pharmacology , Nicotiana/drug effects , Nicotiana/genetics , Transcriptome/drug effects , Transcriptome/genetics
11.
Food Chem ; 303: 125376, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31442900

ABSTRACT

This study investigated the effects of persistent ultraviolet B (UV-B) irradiation on isoflavone accumulation in soybean sprouts. Three malonyl isoflavones were increased by UV-B. Malonylgenistin specifically accumulated upon UV-B exposure, whereas the other isoflavones were significantly increased under both dark conditions and UV-B exposure. The results of isoflavone accumulation to UV-B irradiation time were observed as following: acetyl glycitin rapidly increased and then gradually decreased; malonyl daidzin and malonyl genistin were highly accumulated within an intermediate period; genistein and daidzin were gradually maximized; daidzin, glycitin, genistein, and malonyl glycitin did not increase; and glycitin, acetyl daidzin, and acetyl genistin exhibited trace amounts. Transcriptional analysis of isoflavonoid biosynthetic genes demonstrated that most metabolic genes were highly activated in response to UV-B 24 and UV-B 36 treatments. In particular, it was found that GmCHS6, GmCHS7, and GmCHS8 genes among the eight known genes encoding chalcone synthase were specifically related to UV-B response.


Subject(s)
Gene Expression Regulation, Plant , Glycine max/radiation effects , Isoflavones/metabolism , Ultraviolet Rays , Acyltransferases/genetics , Acyltransferases/metabolism , Genistein/metabolism , Glucosides/metabolism , Kinetics , Seedlings/genetics , Seedlings/metabolism , Seedlings/radiation effects , Glycine max/genetics , Glycine max/metabolism , Time
12.
Carbohydr Polym ; 203: 26-34, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30318212

ABSTRACT

Recently, Near-infrared (NIR)-induced photothermal killing of pathogenic bacteria has received considerable attention due to the increase in antibiotic resistant bacteria. In this paper, we report a simple aqueous solution-based strategy to construct an effective photothermal nanocomposite composed of poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) and agarose with thermo-processability, light triggered self-healing, and excellent antibacterial activity. Our experiments revealed that PEDOT:PSS/agarose was easily coated on both a 2D glass substrate and 3D cotton structure. Additionally, PEDOT:PSS/agarose can be designed into free-standing objects of diverse shape as well as restored through an NIR light-induced self-healing effect after damage. Taking advantage of strong NIR light absorption, PEDOT:PSS/agarose exhibited a sharp temperature increase of 24.5 °C during NIR exposure for 100 s. More importantly, we demonstrated that the temperature increase on PEDOT:PSS/agarose via photothermal conversion resulted in the rapid and effective killing of nearly 100% of the pathogenic bacteria within 2 min of NIR irradiation.

13.
Plant Physiol ; 179(2): 558-568, 2019 02.
Article in English | MEDLINE | ID: mdl-30545904

ABSTRACT

Root hairs are important for absorption of nutrients and water from the rhizosphere. The Root Hair Defective-Six Like (RSL) Class II family of transcription factors is expressed preferentially in root hairs and has a conserved role in root hair development in land plants. We functionally characterized the seven members of the RSL Class II subfamily in the rice (Oryza sativa) genome. In root hairs, six of these genes were preferentially expressed and four were strongly expressed. Phenotypic analysis of each mutant revealed that Os07g39940 plays a major role in root hair formation, based on observations of a short root hair phenotype in those mutants. Overexpression (OX) for each of four family members in rice resulted in an increase in the density and length of root hairs. These four members contain a transcription activation domain and are targeted to the nucleus. They interact with rice Root Hairless1 (OsRHL1), a key regulator of root hair development. When heterologously expressed in epidermal cells of Nicotiana benthamiana leaves, OsRHL1 was predominantly localized to the cytoplasm. When coexpressed with each of the four RSL Class II members, however, OsRLH1 was translocated to the nucleus. Transcriptome analysis using Os07g39940-OX plants revealed that 86 genes, including Class III peroxidases, were highly up-regulated. Furthermore, reactive oxygen species levels in the root hairs were increased in Os07g39940-OX plants but were drastically reduced in the os07g39940 and rhl1 mutants. Our results demonstrate that RSL Class II members function as essential regulators of root hair development in rice.


Subject(s)
Cell Nucleus/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Plant Roots/growth & development , Transcription Factors/metabolism , Cell Nucleus/genetics , Cytoplasm/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Mutation , Oryza/genetics , Oryza/growth & development , Plant Epidermis/genetics , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Protein Transport , Reactive Oxygen Species/metabolism
14.
Plant Physiol Biochem ; 132: 557-565, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30326434

ABSTRACT

Although previous studies have demonstrated that the degree of demethylesterification of pectin polysaccharides is modulated during tomato fruit ripening, its involvement in vegetative organ development has been seldom investigated. As a first step in understanding the importance of pectin modification during vegetative stages, we used chemical, biochemical, and molecular approaches to analyze PMEs and PMEIs in tomato plants. We found that tomato cell walls isolated from vegetative tissues as well as the fruit contain substantial quantities of pectin, and different degrees of methylesterification were evident in different tissues. Our chemical study was further substantiated by immunolocalization analysis, which showed that selective removal of pectin-bound methyl groups is required for proper organ development and growth. In the tomato genome, there exists 79 PMEs and 48 PMEIs with temporally and spatially regulated expression. As a case study, we showed that two tomato PMEIs (SolycPMEI13 and SolycPMEI14) exhibited PMEI activities. This is the first report regarding the genome-wide identification and expression profiling of PME/PMEIs in tomato and the first chemical evidence of the differential degrees of pectin methylesterification in vegetative and reproductive tissues. Taken together, our findings provide an important tool to unravel the molecular and physiological functions of tomato PME and PMEI in further study.


Subject(s)
Carboxylic Ester Hydrolases/antagonists & inhibitors , Carboxylic Ester Hydrolases/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Antibodies, Monoclonal/metabolism , Cell Wall/metabolism , Organ Specificity , Pectins/metabolism , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/metabolism
15.
Rice (N Y) ; 11(1): 48, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30159808

ABSTRACT

BACKGROUND: Root hairs are valuable in taking up nutrients and water from the rhizosphere and serving as sites of interactions with soil microorganisms. By increasing the external surface area of the roots or interacting with rhizobacteria, root hairs directly and indirectly promote plant growth and yield. Transcriptome data can be used to understand root-hair development in rice. RESULT: We performed Agilent 44 K microarray experiments with enriched root-hair samples and identified 409 root hair-preferential genes in rice. The expression patterns of six genes were confirmed using a GUS reporter system and quantitative RT-PCR analysis. Gene Ontology (GO) analysis demonstrated that 13 GO terms, including oxygen transport and cell wall generation, were highly over-represented in those genes. Although comparative analysis between rice and Arabidopsis revealed a large proportion of orthologous pairs, their spatial expression patterns were not conserved. To investigate the molecular network associated with root hair-preferential genes in rice, we analyzed the PPI network as well as coexpression data. Subsequently, we developed a refined network consisting of 24 interactions between 10 genes and 18 of their interactors. CONCLUSION: Identification of root hair-preferential genes and in depth analysis of those genes will be a useful reference to accelerate the understanding of root-hair development in rice.

16.
J Microbiol Biotechnol ; 28(6): 968-975, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29642290

ABSTRACT

In the course of screening for microbes with nematicidal activity, we found that Enterobacter asburiae HK169 displayed promising nematicidal activity against the root-knot nematode Meloidogyne incognita, along with plant growth-promoting properties. Soil drenching of a culture of HK169 reduced gall formation by 66% while also increasing root and shoot weights by 251% and 160%, respectively, compared with an untreated control. The cell-free culture filtrate of the HK169 culture killed all juveniles of M. incognita within 48 h. In addition, the nematicidal activity of the culture filtrate was dramatically reduced by a protease inhibitor, suggesting that proteolytic enzymes contribute to the nematicidal activity of HK169. In order to obtain genomic information about the HK169 isolate related to its nematicidal and plant growth-promoting activities, we sequenced and analyzed the whole genome of the HK169 isolate, and the resulting information provided evidence that the HK169 isolate has nematicidal and plant growth-promoting activities. Taken together, these observations enable the future application of E. asburiae HK169 as a biocontrol agent for nematode control and promote our understanding of the beneficial interactions between E. asburiae HK169 and plants.


Subject(s)
Anthelmintics/metabolism , Antibiosis , Enterobacter/physiology , Plant Growth Regulators/metabolism , Solanum lycopersicum/growth & development , Tylenchoidea/physiology , Animals , Enterobacter/growth & development , Enterobacter/metabolism , Genome, Bacterial , Plant Roots/growth & development , Plant Shoots/growth & development , Sequence Analysis, DNA , Tylenchoidea/growth & development , Tylenchoidea/microbiology , Whole Genome Sequencing
17.
J Plant Physiol ; 208: 17-25, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27889517

ABSTRACT

Pectin methylesterases (PMEs, EC 3.1.1.11) belonging to carbohydrate esterase family 8 cleave the ester bond between a galacturonic acid and an methyl group and the resulting change in methylesterification level plays an important role during the growth and development of plants. Optimal pectin methylesterification status in each cell type is determined by the balance between PME activity and post-translational PME inhibition by PME inhibitors (PMEIs). Rice contains 49 PMEIs and none of them are functionally characterized. Genomic sequence analysis led to the identification of rice PMEI28 (OsPMEI28). Recombinant OsPMEI28 exhibited inhibitory activity against commercial PME protein with the highest activities detected at pH 8.5. Overexpression of OsPMEI28 in rice resulted in an increased level of cell wall bound methylester groups and differential changes in the composition of cell wall neutral monosaccharides and lignin content in culm tissues. Consequently, transgenic plants overexpressing OsPMEI28 exhibited dwarf phenotypes and reduced culm diameter. Our data indicate that OsPMEI28 functions as a critical structural modulator by regulating the degree of pectin methylesterification and that an impaired status of pectin methylesterification affects physiochemical properties of the cell wall components and causes abnormal cell extensibility in rice culm tissues.


Subject(s)
Carboxylic Ester Hydrolases/antagonists & inhibitors , Enzyme Inhibitors/metabolism , Gene Expression Regulation, Enzymologic , Oryza/enzymology , Pectins/metabolism , Amino Acid Sequence , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Cell Wall/metabolism , Gene Expression , Gene Expression Regulation, Plant , Organ Specificity , Oryza/cytology , Oryza/genetics , Phenotype , Plant Proteins/antagonists & inhibitors , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Recombinant Proteins , Sequence Alignment , Sequence Analysis, DNA
18.
Plant Physiol Biochem ; 101: 105-112, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26874295

ABSTRACT

Cell wall modifications such as partial degradation and depolymerization by cell wall hydrolases are normal cellular processes and are required for the functionalities of different cell types. Pectin, one of the major cell wall polysaccharides, is predominantly found in primary cell walls and middle lamellae and is subjected to in muro modification, primarily by cell wall-localized pectin methylesterases (PMEs). Molecular biochemical studies have demonstrated that enzymatic activities of PMEs are governed by multiple pectin methylesterase inhibitors (PMEIs), which consequently control the pectin methylesterification status. Although a few studies in Arabidopsis have shown the importance of this PMEI-mediated regulation in the biophysical properties of cell walls, little is known about the molecular physiological functions of rice PMEIs. We found 49 members of the PMEI family in the rice genome. Analysis of their transcript levels by quantitative real-time PCR and meta expression analysis showed that they are regulated spatially and temporally, as well as in response to diverse stresses. Quantification of cell wall-bound methylesters indicated that the degree of pectin methylesterification is developmentally regulated; in particular, higher PMEI activities were detected in cell wall proteins prepared from young leaves. Furthermore, an activity assay demonstrated that two recombinant OsPMEI proteins (OsPMEI8 and 12) were able to inhibit the enzymatic activity of a commercial PME protein. Subcellular localization indicated that OsPMEI8 is targeted to the middle lamella and OsPMEI12 is localized in the plasma membrane and nucleus. Taken together, our findings provide the first molecular and biochemical evidence for functional characterization of PMEIs in rice growth and development.


Subject(s)
Cell Membrane , Enzyme Inhibitors/metabolism , Gene Expression Regulation, Plant/physiology , Oryza , Plant Proteins , Cell Membrane/genetics , Cell Membrane/metabolism , Cloning, Molecular , Oryza/genetics , Oryza/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics
19.
Mol Plant Pathol ; 17(5): 755-68, 2016 06.
Article in English | MEDLINE | ID: mdl-26456718

ABSTRACT

Molecular mechanisms underlying the responses to environmental factors, such as nitrogen, carbon and pH, involve components that regulate the production of secondary metabolites, including mycotoxins. In this study, we identified and characterized a gene in the FGSG_02083 locus, designated as FgArt1, which was predicted to encode a Zn(II)2 Cys6 zinc finger transcription factor. An FgArt1 deletion mutant of Fusarium graminearum exhibited impaired starch hydrolysis as a result of significantly reduced α-amylase gene expression. The deletion strain was unable to produce trichothecenes and exhibited low Tri5 and Tri6 expression levels, whereas the complemented strain showed a similar ability to produce trichothecenes as the wild-type strain. In addition, FgArt1 deletion resulted in impairment of germination in starch liquid medium and reduced pathogenicity on flowering wheat heads. To investigate the roles of the FgArt1 homologue in F. verticillioides, we deleted the FVEG_02083 gene, and the resulting strain showed defects in starch hydrolysis, similar to the FgArt1 deletion strain, and produced no detectable level of fumonisin B1 . Fum1 and Fum12 expression levels were undetectable in the deletion strain. However, when the FvArt1-deleted F. verticillioides strain was complemented with FgArt1, the resulting strain was unable to recover the production of fumonisin B1 , although FgArt1 expression and starch hydrolysis were induced. Thus, our results suggest that there are different regulatory pathways governed by each ART1 transcription factor in trichothecene and fumonisin biosynthesis. Taken together, we suggest that ART1 plays an important role in both trichothecene and fumonisin biosynthesis by the regulation of genes involved in starch hydrolysis.


Subject(s)
Fungal Proteins/metabolism , Fusarium/metabolism , Mycotoxins/biosynthesis , Starch/metabolism , Transcription Factors/metabolism , Carbon/pharmacology , Fumonisins/metabolism , Fusarium/drug effects , Fusarium/genetics , Fusarium/growth & development , Gene Expression Regulation, Fungal/drug effects , Genes, Fungal , Hydrolysis , Plant Diseases/genetics , Plant Diseases/microbiology , Transcription, Genetic/drug effects , Trichothecenes/biosynthesis , Triticum/microbiology , Virulence/drug effects , Virulence/genetics , Zinc Fingers
20.
Tree Physiol ; 35(11): 1264-77, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26433020

ABSTRACT

Gibberellins (GAs) are important regulators of plant shoot biomass growth, and GA 20-oxidase (GA20ox) is one of the major regulatory enzymes in the GA biosynthetic pathway. Previously, we showed that the expression levels of a putative GA20ox1 (i.e., PdGA20ox1) in stem tissue of 3-month-old seedlings of 12 families of Pinus densiflora were positively correlated with stem diameter growth across those same families growing in an even-aged 32-year-old pine forest (Park EJ, Lee WY, Kurepin LV, Zhang R, Janzen L, Pharis RP (2015) Plant hormone-assisted early family selection in Pinus densiflora via a retrospective approach. Tree Physiol 35:86-94). To further investigate the molecular function of this gene in the stem wood growth of forest trees, we produced transgenic poplar lines expressing PdGA20ox1 under the control of the 35S promoter (designated as 35S::PdGA20ox1). By age 3 months, most of the 35S::PdGA20ox1 poplar trees were showing an exceptional enhancement of stem wood growth, i.e., up to fourfold increases in stem dry weight, compared with the nontransformed control poplar plants. Significant increases in endogenous GA1, its immediate precursor (GA20) and its catabolite (GA8) in elongating internode tissue accompanied the increased stem growth in the transgenic lines. Additionally, the development of gelatinous fibers occurred in vertically grown stems of the 35S::PdGA20ox1 poplars. An analysis of the cell wall monosaccharide composition of the 35S::PdGA20ox1 poplars showed significant increases in xylose and glucose contents, indicating a qualitative increase in secondary wall depositions. Microarray analyses led us to find a total of 276 probe sets that were upregulated (using threefold as a threshold) in the stem tissues of 35S::PdGA20ox1 poplars relative to the controls. 'Cell organization or biogenesis'- and 'cell wall'-related genes were overrepresented, including many of genes that are involved in cell wall modification. Several transcriptional regulators, which positively regulate cell elongation through GA signaling, were also upregulated. In contrast, genes involved in defense signaling were appreciably downregulated in the 35S::PdGA20ox1 stem tissues, suggesting a growth versus defense trade-off. Taken together, our results suggest that PdGA20ox1 functions to promote stem growth and wood formation in poplar, probably by activating GA signaling while coincidentally depressing defense signaling.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Plant/physiology , Mixed Function Oxygenases/metabolism , Pinus/enzymology , Populus/metabolism , Wood/growth & development , Abscisic Acid/biosynthesis , Biomass , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Mixed Function Oxygenases/genetics , Pinus/growth & development , Pinus/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Populus/enzymology , Populus/genetics , Protein Array Analysis , RNA, Plant/genetics , RNA, Plant/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...