Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 219(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-36129453

ABSTRACT

Nucleotide-binding oligomerization domain (NBD), leucine-rich repeat (LRR) containing protein family (NLRs) are intracellular pattern recognition receptors that mediate innate immunity against infections. The endothelium is the first line of defense against blood-borne pathogens, but it is unclear which NLRs control endothelial cell (EC) intrinsic immunity. Here, we demonstrate that human ECs simultaneously activate NLRP1 and CARD8 inflammasomes in response to DPP8/9 inhibitor Val-boro-Pro (VbP). Enterovirus Coxsackie virus B3 (CVB3)-the most common cause of viral myocarditis-predominantly activates CARD8 in ECs in a manner that requires viral 2A and 3C protease cleavage at CARD8 p.G38 and proteasome function. Genetic deletion of CARD8 in ECs and human embryonic stem cell-derived cardiomyocytes (HCMs) attenuates CVB3-induced pyroptosis, inflammation, and viral propagation. Furthermore, using a stratified endothelial-cardiomyocyte co-culture system, we demonstrate that deleting CARD8 in ECs reduces CVB3 infection of the underlying cardiomyocytes. Our study uncovers the unique role of CARD8 inflammasome in endothelium-intrinsic anti-viral immunity.


Subject(s)
Cardiovascular System , Inflammasomes , Apoptosis Regulatory Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Cardiovascular System/metabolism , Humans , Inflammasomes/metabolism , Leucine , Neoplasm Proteins/metabolism , Nucleotides , Proteasome Endopeptidase Complex/metabolism , Viral Proteases
2.
Mol Cell ; 82(15): 2885-2899.e8, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35841888

ABSTRACT

Translated small open reading frames (smORFs) can have important regulatory roles and encode microproteins, yet their genome-wide identification has been challenging. We determined the ribosome locations across six primary human cell types and five tissues and detected 7,767 smORFs with translational profiles matching those of known proteins. The human genome was found to contain highly cell-type- and tissue-specific smORFs and a subset that encodes highly conserved amino acid sequences. Changes in the translational efficiency of upstream-encoded smORFs (uORFs) and the corresponding main ORFs predominantly occur in the same direction. Integration with 456 mass-spectrometry datasets confirms the presence of 603 small peptides at the protein level in humans and provides insights into the subcellular localization of these small proteins. This study provides a comprehensive atlas of high-confidence translated smORFs derived from primary human cells and tissues in order to provide a more complete understanding of the translated human genome.


Subject(s)
Gene Expression Regulation , Ribosomes , Genome, Human/genetics , Humans , Open Reading Frames/genetics , Protein Biosynthesis , Proteins/metabolism , RNA/metabolism , Ribosomes/genetics , Ribosomes/metabolism
3.
Nat Commun ; 12(1): 2130, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33837217

ABSTRACT

Mito-SEPs are small open reading frame-encoded peptides that localize to the mitochondria to regulate metabolism. Motivated by an intriguing negative association between mito-SEPs and inflammation, here we screen for mito-SEPs that modify inflammatory outcomes and report a mito-SEP named "Modulator of cytochrome C oxidase during Inflammation" (MOCCI) that is upregulated during inflammation and infection to promote host-protective resolution. MOCCI, a paralog of the NDUFA4 subunit of cytochrome C oxidase (Complex IV), replaces NDUFA4 in Complex IV during inflammation to lower mitochondrial membrane potential and reduce ROS production, leading to cyto-protection and dampened immune response. The MOCCI transcript also generates miR-147b, which targets the NDUFA4 mRNA with similar immune dampening effects as MOCCI, but simultaneously enhances RIG-I/MDA-5-mediated viral immunity. Our work uncovers a dual-component pleiotropic regulation of host inflammation and immunity by MOCCI (C15ORF48) for safeguarding the host during infection and inflammation.


Subject(s)
Electron Transport Complex IV/genetics , Genetic Pleiotropy/immunology , Inflammation/immunology , MicroRNAs/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Cell Line , Electron Transport Complex IV/metabolism , Gene Knockout Techniques , Humans , Inflammation/genetics , Inflammation/pathology , Membrane Potential, Mitochondrial/immunology , MicroRNAs/genetics , Mitochondria/immunology , Mitochondria/pathology , Primary Cell Culture , Reactive Oxygen Species/metabolism , Up-Regulation/immunology
4.
Dev Biol ; 455(2): 382-392, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31315026

ABSTRACT

Estrogen related receptor beta (Esrrb) is an orphan nuclear receptor that is required for self-renewal and pluripotency in mouse embryonic stem (ES) cells. However, in the early post-implantation mouse embryo, Esrrb is specifically expressed in the extraembryonic ectoderm (ExE) and plays a crucial role in trophoblast development. Previous studies showed that Esrrb is also required to maintain trophoblast stem (TS) cells, the in vitro stem cell model of the early trophoblast lineage. In order to identify regulatory targets of Esrrb in vivo, we performed microarray analysis of Esrrb-null versus wild-type post-implantation ExE, and identified 30 genes down-regulated in Esrrb-mutants. Among them is Bmp4, which is produced by the ExE and known to be critical for primordial germ cell (PGC) specification in vivo. We further identified an enhancer region bound by Esrrb at the Bmp4 locus by performing Esrrb ChIP-seq and luciferase reporter assay using TS cells. Finally, we established a knockout mouse line in which the enhancer region was deleted using CRISPR/Cas9 technology. Both Esrrb-null embryos and enhancer knockout embryos expressed lower levels of Bmp4 in the ExE, and had reduced numbers of PGCs. These results suggested that Esrrb functions as an upstream factor of Bmp4 in the ExE, regulating proper PGC development in mice.


Subject(s)
Embryonic Development , Germ Cells , Receptors, Estrogen/physiology , Animals , Bone Morphogenetic Protein 4/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Ectoderm/embryology , Enhancer Elements, Genetic , Mice , Mice, Knockout , Protein Array Analysis
5.
Stem Cells ; 37(10): 1307-1318, 2019 10.
Article in English | MEDLINE | ID: mdl-31233251

ABSTRACT

Trophoblast stem cells (TSCs) are a heterogeneous cell population despite the presence of fibroblast growth factor (FGF) and transforming growth factor ß (TGFB) as key growth factors in standard culture conditions. To understand what other signaling cascades control the stem cell state of mouse TSCs, we performed a kinase inhibitor screen and identified several novel pathways that cause TSC differentiation. Surprisingly, inhibition of phosphoinositide-3-kinase (PI3K) signaling increased the mRNA and protein expression of stem cell markers instead, and resulted in a tighter epithelial colony morphology and fewer differentiated cells. PI3K inhibition could not substitute for FGF or TGFB and did not affect phosphorylation of extracellular signal-regulated kinase, and thus acts independently of these pathways. Upon removal of PI3K inhibition, TSC transcription factor levels reverted to normal TSC levels, indicating that murine TSCs can reversibly switch between these two states. In summary, PI3K inhibition reduces the heterogeneity and seemingly heightens the stem cell state of TSCs as indicated by the simultaneous upregulation of multiple key marker genes and cell morphology. Stem Cells 2019;37:1307-1318.


Subject(s)
Phosphatidylinositol 3-Kinase/metabolism , Trophoblasts/metabolism , Animals , Cell Differentiation , Mice , Signal Transduction
6.
Development ; 145(16)2018 04 16.
Article in English | MEDLINE | ID: mdl-29540503

ABSTRACT

During pregnancy the trophoblast cells of the placenta are the only fetal cells in direct contact with maternal blood and decidua. Their functions include transport of nutrients and oxygen, secretion of pregnancy hormones, remodelling of the uterine arteries, and communicating with maternal cells. Despite the importance of trophoblast cells in placental development and successful pregnancy, little is known about the identity, location and differentiation of human trophoblast progenitors. We identify a proliferative trophoblast niche at the base of the cytotrophoblast cell columns in first trimester placentas that is characterised by integrin α2 (ITGA2) expression. Pulse-chase experiments with 5-iodo-2'-deoxyuridine indicate that these cells might contribute to both villous (VCT) and extravillous (EVT) lineages. These proliferating trophoblast cells can be isolated by flow cytometry using ITGA2 as a marker and express genes from both VCT and EVT. Microarray expression analysis shows that ITAG2+ cells display a unique transcriptional signature, including genes involved in NOTCH signalling, and exhibit a combination of epithelial and mesenchymal characteristics. ITGA2 thus marks a niche allowing the study of pure populations of trophoblast progenitor cells.


Subject(s)
Integrin alpha2/metabolism , Placenta/cytology , Placentation/physiology , Receptor, Notch1/metabolism , Stem Cells/cytology , Trophoblasts/cytology , Biomarkers/metabolism , Cell Proliferation , Female , Humans , Placenta/metabolism , Pregnancy , Pregnancy Trimester, First , Signal Transduction
7.
Stem Cell Reports ; 6(2): 257-72, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26862703

ABSTRACT

Controversy surrounds reports describing the derivation of human trophoblast cells from placentas and embryonic stem cells (ESC), partly due to the difficulty in identifying markers that define cells as belonging to the trophoblast lineage. We have selected criteria that are characteristic of primary first-trimester trophoblast: a set of protein markers, HLA class I profile, methylation of ELF5, and expression of microRNAs (miRNAs) from the chromosome 19 miRNA cluster (C19MC). We tested these criteria on cells previously reported to show some phenotypic characteristics of trophoblast: bone morphogenetic protein (BMP)-treated human ESC and 2102Ep, an embryonal carcinoma cell line. Both cell types only show some, but not all, of the four trophoblast criteria. Thus, BMP-treated human ESC have not fully differentiated to trophoblast. Our study identifies a robust panel, including both protein and non-protein-coding markers that, in combination, can be used to reliably define cells as characteristic of early trophoblast.


Subject(s)
Pregnancy Trimester, First/metabolism , Trophoblasts/cytology , Biomarkers/metabolism , Cells, Cultured , Chromosomes, Human, Pair 19/genetics , DNA Methylation/genetics , DNA-Binding Proteins , Female , Fibroblast Growth Factors/pharmacology , Histocompatibility Antigens Class I/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/drug effects , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Pregnancy , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-ets/genetics , Pyrimidines/pharmacology , Terminology as Topic , Transcription Factors , Trophoblasts/drug effects , Trophoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...