Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 275(1): 69-88, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18067579

ABSTRACT

The oxidation and inactivation of protein tyrosine phosphatases is one mechanism by which reactive oxygen species influence tyrosine phosphorylation-dependent signaling events and exert their biological functions. In the present study, we determined the redox status of endogenous protein tyrosine phosphatases in HepG2 and A431 human cancer cells, in which reactive oxygen species are produced constitutively. We used mass spectrometry to assess the state of oxidation of the catalytic cysteine residue of endogenous PTP1B and show that this residue underwent both reversible and irreversible oxidation to high stoichiometry in response to intrinsic reactive oxygen species production. In addition, our data show that the oxidation of PTP1B is specific to the active site Cys, with the other Cys residues in the protein remaining in a reduced state. Treatment of these cells with diphenyleniodonium, an inhibitor of NADPH oxidases, decreased reactive oxygen species levels. This resulted in inhibition of protein tyrosine phosphatase oxidation, concomitant with decreased tyrosine phosphorylation of cellular proteins and inhibition of anchorage-independent cell growth. Therefore, our data also suggest that the high level of intrinsic reactive oxygen species may contribute to the transformed phenotype of HepG2 and A431 cells via constitutive inactivation of cellular protein tyrosine phosphatases.


Subject(s)
Neoplasms/enzymology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Cysteine/genetics , Cysteine/metabolism , HeLa Cells , Humans , Mass Spectrometry , Mice , Molecular Sequence Data , NIH 3T3 Cells , Neoplasms/metabolism , Oxidation-Reduction , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Reactive Oxygen Species , Tyrosine/metabolism
2.
Proteomics ; 3(12): 2472-86, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14673797

ABSTRACT

An expression map of the most abundant proteins in human hepatoma HepG2 cells was established by a combination of complementary shotgun proteomics approaches. Two-dimensional liquid chromatography (LC)-nano electrospray ionization (ESI) tandem mass spectrometry (MS/MS) as well as one-dimensional LC-matrix-assisted laser desorption/ionization MS/MS were evaluated and shown that additional separation introduced at the peptide level was not as efficient as simple prefractionation of protein extracts in extending the range and total number of proteins identified. Direct LC-nanoESI MS/MS analyses of peptides from total solubilized fraction and the excised gel bands from one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis fractionated insolubilized fraction afforded the best combination in efficient construction of a nonredundant cell map. Compiling data from multiple variations of rapid shotgun proteomics analyses is nonetheless useful to increase sequence coverage and confidence of hits especially for those proteins identified primarily by a single or two peptide matches. While the returned hit score in general reflects the abundance of the respective proteins, it is not a reliable index for differential expression. Using another closely related hepatoma Hep3B as a comparative basis, 16 proteins with more than two-fold difference in expression level as defined by spot intensity in two-dimensional gel electrophoresis analysis were identified which notably include members of the heat shock protein (Hsp) and heterogeneous nuclear ribonucleoprotein (hnRPN) families. The observed higher expression level of hnRNP A2/B1 and Hsp90 in Hep3B led to a search for reported functional roles mediated in concert by both these multifunctional cellular chaperones. In agreement with the proposed model for telomerase and telomere bound proteins in promoting their interactions, data was obtained which demonstrated that the expression proteomics data could be correlated with longer telomeric length in tumorigenic Hep3B. This biological significance constitutes the basis for further delineation of the dynamic interactions and modifications of the two protein families and demonstrated how proteomic and biological investigation could be mutually substantiated in a productive cycle of hypothesis and pattern driven research.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Proteome/metabolism , Telomere/metabolism , Chromatography, Liquid , Databases, Protein , Electrophoresis, Gel, Two-Dimensional , Humans , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...