Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Fitoterapia ; 176: 106025, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768797

ABSTRACT

Algae and its metabolites have been a popular subject of research in numerous fields over the years. Various reviews have been written on algal bioactive components, but a specific focus on Antarctic-derived algae is seldom reviewed. Due to the extreme climate conditions of Antarctica, it is hypothesized that the acclimatized algae may have given rise to a new set of bioactive compounds as a result of adaptation. Although most studies done on Antarctic algae are based on ecological and physiological studies, as well as in the field of nanomaterial synthesis, some studies point out the potential therapeutic properties of these compounds. As an effort to shed light on a different application of Antarctic algae, this review focuses on evaluating its different medicinal properties, including antimicrobial, anticancer, antioxidative, anti-inflammatory, and skin protective effects.


Subject(s)
Antioxidants , Antarctic Regions , Antioxidants/pharmacology , Antioxidants/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Biological Products/pharmacology , Biological Products/isolation & purification , Molecular Structure
2.
RSC Adv ; 12(24): 15261-15283, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35693222

ABSTRACT

Stimuli responsiveness has been an attractive feature of smart material design, wherein the chemical and physical properties of the material can be varied in response to small environmental change. Polyurethane (PU), a widely used synthetic polymer can be upgraded into a light-responsive smart polymer by introducing a light-sensitive moiety into the polymer matrix. For instance, azobenzene, spiropyran, and coumarin result in reversible light-induced reactions, while o-nitrobenzyl can result in irreversible light-induced reactions. These variations of light-stimulus properties endow PU with wide ranges of physical, mechanical, and chemical changes upon exposure to different wavelengths of light. PU responsiveness has rarely been reviewed even though it is known to be one of the most versatile polymers with diverse ranges of applications in household, automotive, electronic, construction, medical, and biomedical industries. This review focuses on the classes of light-responsive moieties used in PU systems, their synthesis, and the response mechanism of light-responsive PU-based materials, which also include dual- or multi-responsive light-responsive PU systems. The advantages and limitations of light-responsive PU are reviewed and challenges in the development of light-responsive PU are discussed.

3.
Polymers (Basel) ; 14(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35566843

ABSTRACT

Due to the specific physiological pH throughout the human body, pH-responsive polymers have been considered for aiding drug delivery systems. Depending on the surrounding pH conditions, the polymers can undergo swelling or contraction behaviors, and a degradation mechanism can release incorporated substances. Additionally, polyurethane, a highly versatile polymer, has been reported for its biocompatibility properties, in which it demonstrates good biological response and sustainability in biomedical applications. In this review, we focus on summarizing the applications of pH-responsive polyurethane in the biomedical and drug delivery fields in recent years. In recent studies, there have been great developments in pH-responsive polyurethanes used as controlled drug delivery systems for oral administration, intravaginal administration, and targeted drug delivery systems for chemotherapy treatment. Other applications such as surface biomaterials, sensors, and optical imaging probes are also discussed in this review.

4.
Article in English | MEDLINE | ID: mdl-33646549

ABSTRACT

There has been increasing concern over the toxic effects of microplastics (MP), nanoplastics (NP), and copper (Cu) on microalgae. However, the combined toxicity of the metal in the presence of polystyrene (PS) MP/NP on microalgae has not been well studied, particularly after long-term exposure (i.e., longer than 4 days). The primary aim of the present study was to investigate the effect of PS MP and NP on Cu toxicity on two freshwater microalgae, namely Chlorella sp. TJ6-5 and Pseudokirchneriella subcapitata NIES-35 after acute exposure for 4 days and up to 16 days. The results showed that both microalgae were sensitive to Cu, but tolerant to MP/NP. However, MP/NP increased the toxicity of Cu at EC50 in both microalgae, which was only noticeable in chronic exposure. Single and combined treatment of MP/NP and Cu induced higher oxidative stress and caused morphological and ultrastructural changes in both microalgae. The adsorption of Cu to MP and NP was low (0.23-14.9%), with most of the Cu present in free ionic form (81.6-105.8%). The findings on different sensitivity of microalgae to Cu in the presence of MP/NP may have significant implication as microalgae are likely to be exposed to a mixture of both MP/NP and Cu in the environment. For example, in air-blasting technology, MP and NP are used as abrasive medium to remove Cu-containing antifouling paints on hulls of ship and submerged surfaces. Wastewater treatment plants receive household wastes containing MP and NP, as well as stormwater runoffs and industrial wastes contaminated with heavy metals.

5.
Polymers (Basel) ; 12(8)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824514

ABSTRACT

Being biodegradable and biocompatible are crucial characteristics for biomaterial used for medical and biomedical applications. Vegetable oil-based polyols are known to contribute both the biodegradability and biocompatibility of polyurethanes; however, petrochemical-based polyols were often incorporated to improve the thermal and mechanical properties of polyurethane. In this work, palm oil-based polyester polyol (PPP) derived from epoxidized palm olein and glutaric acid was reacted with isophorone diisocyanate to produce an aliphatic polyurethane, without the incorporation of any commercial petrochemical-based polyol. The effects of water content and isocyanate index were investigated. The polyurethanes produced consisted of > 90% porosity with interconnected micropores and macropores (37-1700 µm) and PU 1.0 possessed tensile strength and compression stress of 111 kPa and 64 kPa. The polyurethanes with comparable thermal stability, yet susceptible to enzymatic degradation with 7-59% of mass loss after 4 weeks of treatment. The polyurethanes demonstrated superior water uptake (up to 450%) and did not induce significant changes in pH of the medium. The chemical changes of the polyurethanes after enzymatic degradation were evaluated by FTIR and TGA analyses. The polyurethanes showed cell viability of 53.43% and 80.37% after 1 and 10 day(s) of cytotoxicity test; and cell adhesion and proliferation in cell adhesion test. The polyurethanes produced demonstrated its potential as biomaterial for soft tissue engineering applications.

6.
Article in English | MEDLINE | ID: mdl-29872923

ABSTRACT

Plastics, with their many useful physical and chemical properties, are widely used in various industries and activities of daily living. Yet, the insidious effects of plastics, particularly long-term effects on aquatic organisms, are not properly understood. Plastics have been shown to degrade to micro- and nanosize particles known as microplastics and nanoplastics, respectively. These minute particles have been shown to cause various adverse effects on aquatic organisms, ranging from growth inhibition, developmental delay and altered feeding behaviour in aquatic animals to decrease of photosynthetic efficiency and induction of oxidative stress in microalgae. This review paper covers the distribution of microplastics and nanoplastics in aquatic ecosystems, focusing on their effects on microalgae as well as co-toxicity of microplastics and nanoplastics with other pollutants. Besides that, this review paper also discusses future research directions which could be taken to gain a better understanding of the impacts of microplastics and nanoplastics on aquatic ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...