Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(24)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36558270

ABSTRACT

The purpose of this study was to evaluate the surface properties of ZnO nanomaterials based on their ability to photodegrade methyl blue dye (MB) and to show their antibacterial properties against different types of Gram-positive bacteria (Bacillus manliponensis, Micrococcus luteus, Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). In this study, ZnO nanomaterials were synthesized rapidly and easily in the presence of 1-4 M NaOH at a low temperature of 40 °C within 4 h. It was found that the ZnO nanomaterials obtained from the 1.0 M (ZnO-1M) and 2.0 M (ZnO-2M) aqueous solutions of NaOH had spherical and needle-shaped forms, respectively. As the concentration of NaOH increased, needle thickness increased and the particles became rod-like. Although the ZnO nanomaterial shapes were different, the bandgap size remained almost unchanged. However, as the NaOH concentration increased, the energy position of the conduction band shifted upward. Photo current curves and photoluminescence intensities suggested that the recombination between photoexcited electrons and holes was low in the ZnO-4M materials prepared in 4.0 M NaOH solution; however, charge transfer was easy. ∙O2- radicals were generated more than ∙OH radicals in ZnO-4M particles, showing stronger antibacterial activity against both Gram-positive and Gram-negative bacteria and stronger decomposition ability on MB dye. The results of this study suggest that on the ZnO nanomaterial surface, ∙O2- radicals generated are more critical for antibacterial activity than particle shape.

2.
J Nanosci Nanotechnol ; 13(9): 6199-202, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24205628

ABSTRACT

In this study, one-dimensional Li0.33MnO2 nanorods were synthesized by a solid state reaction using gamma-MnO2 as a precursor. Gamma-MnO2 was prepared under different reaction times by a redox process. The HR-TEM results showed that the diameter and length of the Li0.33MnO2 nanorods are 5-20 nm and about 200 nm, respectively. The Li0.33MnO2 nanorods delivered a discharge capacity of 157 mA h g(-1) at 1 C, and retained 97% of their initial capacity over 30 cycles. Good rate performance was also observed, with discharge capacities of 201 and 133 mA h g(-1) at 0.1 C and 2 C, respectively. The morphology of the nanorods could increase their electrochemical properties, resulting in higher capacity and rate performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...