Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 432(3): 193-7, 2008 Feb 27.
Article in English | MEDLINE | ID: mdl-18249068

ABSTRACT

Glutamate toxicity has been implicated in various retinal diseases. Green tea leaf extract catechin has protective effects against cellular toxicity. This study investigated the effects of catechin on the glutamate-treated retina. Porcine retinal homogenates were incubated with glutamate (20 nmol) at 37 degrees C for 60 min. Catechin was co-incubated with the glutamate-treated retina in the same condition. The malondialdehyde (MDA) levels were determined as an index of lipid peroxidation (LPO). Differential protein expressions were derived from two-dimensional gel electrophoresis. Mass spectrometry was conducted to identify the proteins. Glutamate increased the retinal MDA (p<0.0001) and catechin reversed the effect (p<0.0001). There were significant changes in seven proteins after the glutamate treatment (p<0.05), namely, heterogeneous ribonucleoprotein, thioredoxin peroxidase, 5-hydroxytryptamine receptor, pyruvate dehydrogenase, ARHA protein, peroxiredoxin 6 and proteasome. Catechin significantly reversed the changes in thioredoxin peroxidase, 5-hydroxytryptamine receptor, peroxiredoxin 6 and pyruvate dehydrogenase (p<0.05). Our study shows that (a) retinal glutamate toxicity is mediated by LPO and protein modification, and (b) catechin ameliorates the toxicity.


Subject(s)
Catechin/pharmacology , Glutamic Acid/toxicity , Lipid Peroxidation/drug effects , Retina/drug effects , Animals , Dose-Response Relationship, Drug , Drug Interactions , Electrophoresis, Gel, Two-Dimensional/methods , In Vitro Techniques , Malondialdehyde/metabolism , Mass Spectrometry/methods , Proteins/metabolism , Swine
2.
Bioconjug Chem ; 16(1): 139-46, 2005.
Article in English | MEDLINE | ID: mdl-15656585

ABSTRACT

Spherical, well-defined core-shell nanoparticles that consist of poly(methyl methacrylate) (PMMA) cores and branched poly(ethylenimine) shells (PEI) were synthesized via a graft copolymerization of methyl methacrylate from branched PEI induced by a small amount of tert-butyl hydroperoxide. The PMMA-PEI core-shell nanoparticles were between 130 to170 nm in diameter and displayed zeta-potentials near +40 mV at pH 7 in 1 mM aqueous NaCl. Plasmid DNA (pDNA) was mixed with nanoparticles and formed complexes of approximately 120 nm in diameter and was highly monodispersed. The complexes were characterized with respect to their particle size, zeta-potential, surface morphology, and DNA integrity. The complexing ability of the nanoparticles was strongly dependent on the molecular weight of the PEI and the thickness of the PEI shells. The stability of the complexes was influenced by the loading ratio of the pDNA and the nanoparticles. The condensed pDNA in the complexes was significantly protected from enzymatic degradation by DNase I. Cytotoxity studies using MTT colorimetric assays suggested that the PMMA-PEI (25 kDa) core-shell nanoparticles were three times less toxic than the branched PEI (25 kDa). Their transfection efficiencies were also significantly higher. Thus, the PEI-based core-shell nanoparticles show considerable potential as carriers for gene delivery.


Subject(s)
Gene Transfer Techniques , Methylmethacrylate/chemistry , Nanotechnology , Polyethyleneimine/chemistry , Cytotoxicity Tests, Immunologic , DNA/analysis , DNA/chemistry , DNA/metabolism , Deoxyribonuclease I/metabolism , Drug Delivery Systems , Drug Stability , Electrochemistry , HeLa Cells , Humans , Molecular Weight , Particle Size , Transfection/methods , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...