Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(22): e2400568, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582504

ABSTRACT

Increasing lithium contents within the lattice of positive electrode materials is projected in pursuit of high-energy-density batteries. However, it intensifies the release of lattice oxygen and subsequent gas evolution during operations. This poses significant challenges for managing internal pressure of batteries, particularly in terms of the management of gas evolution in composite electrodes-an area that remains largely unexplored. Conventional assumptions postulate that the total gas evolution is estimated by multiplying the total particle count by the quantities of gas products from an individual particle. Contrarily, this investigation on overlithiated materials-a system known to release the lattice oxygen-demonstrates that loading densities and inter-particle spacing in electrodes significantly govern gas evolution rates, leading to distinct extents of gas formation despite of an equivalent quantity of released lattice oxygen. Remarkably, this study discoveres that O2 and CO2 evolution rates are proportional to 1O2 concentration by the factor of second and first-order, respectively. This indicates an exceptionally greater change in the evolution rate of O2 compared to CO2 depending on local 1O2 concentration. These insights pave new routes for more sophisticated approaches to manage gas evolution within high-energy-density batteries.

2.
Nat Commun ; 13(1): 4538, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35927278

ABSTRACT

The growth of dendrites on lithium metal electrodes is problematic because it causes irreversible capacity loss and safety hazards. Localised high-concentration electrolytes (LHCEs) can form a mechanically stable solid-electrolyte interphase and prevent uneven growth of lithium metal. However, the optimal physicochemical properties of LHCEs have not been clearly determined which limits the choice to fluorinated non-solvating cosolvents (FNSCs). Also, FNSCs in LHCEs raise environmental concerns, are costly, and may cause low cathodic stability owing to their low lowest unoccupied molecular orbital level, leading to unsatisfactory cycle life. Here, we spectroscopically measured the Li+ solvation ability and miscibility of candidate non-fluorinated non-solvating cosolvents (NFNSCs) and identified the suitable physicochemical properties for non-solvating cosolvents. Using our design principle, we proposed NFNSCs that deliver a coulombic efficiency up to 99.0% over 1400 cycles. NMR spectra revealed that the designed NFNSCs were highly stable in electrolytes during extended cycles. In addition, solvation structure analysis by Raman spectroscopy and theoretical calculation of Li+ binding energy suggested that the low ability of these NFNSCs to solvate Li+ originates from the aromatic ring that allows delocalisation of electron pairs on the oxygen atom.

3.
ACS Appl Mater Interfaces ; 13(44): 52202-52214, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34726369

ABSTRACT

SiOx (x ≈ 1) is one of the most promising anode materials for application in secondary lithium-ion batteries because of its high theoretical capacity. Despite this merit, SiOx has a poor initial Coulombic efficiency, which impedes its widespread use. To overcome this limitation, in this work, we successfully demonstrate a novel synthesis of Mg-doped SiOx via a mass-producible physical vapor deposition method. The solid-state reaction between Mg and SiOx produces Si and electrochemically inert magnesium silicate, thus increasing the initial Coulombic efficiency. The Mg doping concentration determines the phase of the magnesium silicate domains, the size of the Si domains, and the heterogeneity of these two domains. Detailed electron microscopy and synchrotron-based analysis revealed that the nanoscale homogeneity of magnesium silicates driven by cycling significantly affected the lifetime. We found that 8 wt % Mg is the most optimized concentration for enhanced cyclability because MgSiO3, which is the dominant magnesium silicate composition, can be homogeneously mixed with silicon clusters, preventing their aggregation during cycling and suppressing void formation.

4.
Adv Mater ; 33(51): e2105337, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34599774

ABSTRACT

Understanding the cycling rate-dependent kinetics is crucial for managing the performance of batteries in high-power applications. Although high cycling rates may induce reaction heterogeneity and affect battery lifetime and capacity utilization, such phase transformation dynamics are poorly understood and uncontrollable. In this study, synchrotron-based operando X-ray diffraction is performed to monitor the high-current-induced phase transformation kinetics of LiNi0.6 Co0.2 Mn0.2 O2 . The sluggish Li diffusion at high Li content induces different phase transformations during charging and discharging, with strong phase separation and homogeneous phase transformation during charging and discharging, respectively. Moreover, by exploiting the dependence of Li diffusivity on the Li content and electrochemically tuning the initial Li content and distribution, phase separation pathway can be redirected to solid solution kinetics at a high charging rate of 7 C. Finite element analysis further elucidates the effect of the Li-content-dependent diffusion kinetics on the phase transformation pathway. The findings suggest a new direction for optimizing fast-cycling protocols based on the intrinsic properties of the materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...