Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(21): 27887-27897, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38753657

ABSTRACT

Zeolitic imidazolate framework (ZIF-8) is a promising material for gas separation applications. It also serves as a prototype for numerous ZIFs, including amorphous ones, with a broader range of possible applications, including sensors, catalysis, and lithography. It consists of zinc coordinated with 2-methylimidazolate (2mIm) and has been synthesized with methods ranging from liquid-phase to solvent-free synthesis, which aim to control its crystal size and shape, film thickness and microstructure, and incorporation into nanocomposites. Depending on the synthesis method and postsynthesis treatments, ZIF-8 materials may deviate from the nominal defect-free ZIF-8 crystal structure due to defects like missing 2mIm, missing zinc, and physically adsorbed 2mIm trapped in the ZIF-8 pores, which may alter its performance and stability. Infrared (IR) spectroscopy has been used to assess the presence of defects in ZIF-8 and related materials. However, conflicting interpretations by various authors persist in the literature. Here, we systematically investigate ZIF-8 vibrational spectra by combining experimental IR spectroscopy and first-principles molecular dynamics simulations, focusing on assigning peaks and elucidating the spectroscopic signals of putative defects present in the ZIF-8 material. We attempt to resolve conflicting assignments from the literature and to provide a comprehensive understanding of the vibrational spectra of ZIF-8 and its defect-induced variations, aiming toward more precise quality control and design of ZIF-8-based materials for emerging applications.

2.
ACS Appl Mater Interfaces ; 14(16): 19023-19030, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35416642

ABSTRACT

Surface characterization is critical for understanding the processes used for preparing catalysts, sorbents, and membranes. Nonthermal plasma (NTP) is a process that achieves high reactivity at low temperatures and is used to tailor the surface properties of materials. In this work, we combine the capabilities of infrared reflection absorption spectroscopy (IRRAS) with NTP for the in situ interrogation of zeolitic imidazolate framework-8 (ZIF-8) thin films to probe modifications in the material induced by oxygen and nitrogen plasmas. The IRRAS measurements in oxygen plasma reveal etching of organic ligands with sequential removal of the methyl group and imidazole ring and with the formation of carbonyl moieties (C═O). In contrast, nitrogen plasma induces mild etching and grafting of nitrile groups (-C≡N). Scanning electron microscopy imaging shows that oxygen plasma, at prolonged times, significantly degrades the ZIF-8 film at the grain boundaries. Treatment of ZIF-8 membranes using mild plasma conditions yields a fivefold enhancement for H2/N2 and CO2/CH4 ideal selectivities and an eightfold enhancement for CO2/N2 ideal selectivity. Additionally, the new tools described here can be used for spectroscopic in situ tracking of plasma-induced chemistry on thin films in general.

3.
Annu Rev Chem Biomol Eng ; 13: 529-555, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35417198

ABSTRACT

In the last decade, zeolitic imidazolate frameworks (ZIFs) have been studied extensively for their potential as selective separation membranes. In this review, we highlight unique structural properties of ZIFs that allow them to achieve certain important separations, like that of propylene from propane, and summarize the state of the art in ZIF thin-film deposition on porous substrates and their modification by postsynthesis treatments. We also review the reported membrane performance for representative membrane synthesis approaches and attempt to rank the synthesis methods with respect to potential for scalability. To compare the dependence of membrane performance on membrane synthesis methods and operating conditions, we map out fluxes and separation factors of selected ZIF-8 membranes for propylene/propane separation. Finally, we provide future directions considering the importance of further improvements in scalability, cost effectiveness, and stable performance under industrially relevant conditions.


Subject(s)
Zeolites , Imidazoles/chemistry , Porosity , Propane , Zeolites/chemistry
4.
Nat Commun ; 13(1): 420, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35058452

ABSTRACT

Patterning metal-organic frameworks (MOFs) at submicrometer scale is a crucial yet challenging task for their integration in miniaturized devices. Here we report an electron beam (e-beam) assisted, bottom-up approach for patterning of two MOFs, zeolitic imidazolate frameworks (ZIF), ZIF-8 and ZIF-67. A mild pretreatment of metal oxide precursors with linker vapor leads to the sensitization of the oxide surface to e-beam irradiation, effectively inhibiting subsequent conversion of the oxide to ZIFs in irradiated areas, while ZIF growth in non-irradiated areas is not affected. Well-resolved patterns with features down to the scale of 100 nm can be achieved. This developer-free, all-vapor phase technique will facilitate the incorporation of MOFs in micro- and nanofabrication processes.

5.
Chem Commun (Camb) ; 57(43): 5250-5253, 2021 May 27.
Article in English | MEDLINE | ID: mdl-33904549

ABSTRACT

Modification of the gas permeation properties of ZIF-8 membranes using electron beam irradiation is reported. 3.8 and 3.2 fold enhancements in ideal selectivity for CO2/N2 and CO2/CH4 can be achieved with less than 1 min exposure time.


Subject(s)
Carbon Dioxide/chemistry , Electrons , Imidazoles/chemistry , Metal-Organic Frameworks/chemistry , Methane/chemistry , Nitrogen/chemistry , Particle Size
6.
Angew Chem Int Ed Engl ; 60(17): 9316-9320, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33481308

ABSTRACT

Vapor-phase treatment of ZIF-8 membranes with manganese(II) acetylacetonate (Mn(acac)2 ) allows permselectivity tuning. Propylene/propane selectivity increases from 31 to 210 after the Mn(acac)2 treatment at 165 °C for 30 min, while selectivities increase from 14.6 to 242 for H2 /CH4 , from 2.9 to 38 for CO2 /CH4 , from 2.4 to 29 for CO2 /N2 , and from 2.9 to 7.5 for O2 /N2 , after Mn(acac)2 treatment at 175 °C for 30 min. Stable equimolar propylene/propane mixture selectivity of 165 at ambient temperature and 4 bar equimolar feed with a propylene flux of 8.3×10-4  mol m-2 s-1 is established. A control experiment excludes thermal treatment alone causing these changes. XPS analysis reveals the presence of Mn(acac)2 on the outer surface of the vapor-treated ZIF-8 membranes while no other changes are detectable by X-ray diffraction and infrared spectroscopy.

7.
ACS Appl Mater Interfaces ; 11(27): 24683-24690, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31241889

ABSTRACT

Currently, air permeable chemical/biological (CB) protective garments are based on activated carbon technology, which reduces moisture vapor transport needed for evaporative cooling and has potential to absorb and concentrate toxic materials. Researchers are exploring classes of sorbent materials that can selectively accumulate and decompose target compounds for potential to enhance protective suits and allow for novel filtration devices. Here, the metal-organic frameworks (MOFs) UiO-66-NH2 and HKUST-1 have been identified as such materials. To better understand how MOFs can perform in future CB protective systems, atomic layer deposition (ALD) and solution deposition were used to modify nonwoven polypropylene and flame-resistant fabrics with HKUST-1 and UiO-66-NH2. Air permeation, water vapor transport, filtration efficiency, and chemical reactivity against chemical agent simulants were assessed in relation to ALD thickness and MOF crystal size. MOF deposition on substrates decreased both air and chemical permeation while increasing filtration efficiency and chemical sorption. Moisture vapor transport was not affected by MOF growth on substrates, which is promising when considering thermal properties of protective garments. Future work should continue to explore how MOF deposition onto fiber and textile substrates impacts transport properties and chemical absorbance.

8.
Small ; 15(10): e1805133, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30707495

ABSTRACT

Abatement of chemical hazards using adsorptive metal-organic frameworks (MOFs) attracts substantial attention, but material stability and crystal integration into functional systems remain key challenges. Herein, water-stable, polymer fiber surface-oriented M-TCPP [M = Cu, Zn, and Co; H2 TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] 2D MOF crystals are fabricated using a facile hydroxy double salt (HDS) solid-source conversion strategy. For the first time, Cu-TCPP is formed from a solid source and confirmed to be highly adsorptive for NH3 and 2-chloroethyl ethyl sulfide (CEES), a blistering agent simulant, in humid (80% relative humidity (RH)) conditions. Moreover, the solid HDS source is found as a unique new approach to control MOF thin-film crystal orientation, thereby facilitating radially arranged MOF crystals on fibers. On a per unit mass of MOF basis in humid conditions, the MOF/fiber composite enhances NH3 adsorptive capacity by a factor of 3 compared to conventionally prepared MOF powders. The synthesis route extends to other MOF/fiber composite systems, therefore providing a new route for chemically protective materials.

9.
ACS Appl Mater Interfaces ; 10(30): 25794-25803, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29972296

ABSTRACT

Metal organic frameworks (MOFs), the UiO series in particular, have attracted much attention because of the high surface area and ability to capture and decontaminate chemical warfare agents. Much work has been done on incorporating these MOFs into or onto textile materials while retaining the desirable properties of the MOF. Many different techniques have been explored to achieve this. Atomic layer deposition (ALD) of TiO2 followed by solvothermal synthesis of MOF has become one of the most adaptable techniques for growing MOFs on the surface of many different polymer fabric materials. However, little work has been done with using this technique on polymer composite materials. In this work, UiO-66-NH2 was grown onto the surface of poly(methyl methacrylate) (PMMA)/Ti(OH)4 and poly(vinylidene fluoride) (PVDF)/Ti(OH)4 composite fibers by first modifying the surface with ALD of TiO2 (@TiO2) followed by solvothermal synthesis of MOF (@MOF). The catalytic activity of these materials was then evaluated using the simulant paraoxon-methyl (DMNP). These new MOF-functionalized composite fabrics were compared to polyamide-6 (PA-6)@TiO2@MOF- and polypropylene (PP)@TiO2@MOF-functionalized fabrics. PMMA/Ti(OH)4@TiO2@MOF fibers resulted in unique hollowed fibers with high surface area of 264 m2/g and fast catalytic activity. The catalytic activity of these samples was found to be related to the active MOF mass fraction on the MOF-functionalized composite fabric, with the hollowed PMMA/Ti(OH)4@TiO2@MOF having the highest weight percent of active MOF and a DMNP t1/2 of 26 min followed by PA-6@TiO2@MOF with 45 min, PVDF/Ti(OH)4@TiO2@MOF with 61 min, and PP@TiO2@MOF with 83 min.

10.
J Vis Exp ; (136)2018 06 13.
Article in English | MEDLINE | ID: mdl-29985357

ABSTRACT

Metal-organic frameworks (MOFs), which contain reactive metal clusters and organic ligands allowing for large porosities and surface areas, have proven effective in gas adsorption, separations, and catalysis. MOFs are most commonly synthesized as bulk powder, requiring additional processes to adhere them to functional devices and fabrics that risk decreasing the powder porosity and adsorption capacity. Here, we demonstrate a method of first coating fabrics with metal oxide films using atomic layer deposition (ALD). This process creates conformal films of controllable thickness on each fiber, while providing a more reactive surface for MOF nucleation. By submerging the ALD coated fabric in solution during solvothermal MOF synthesis, the MOFs create a conformal, well-adhered coating on the fibers, resulting in a MOF-functionalized fabric, without additional adhesion materials that may block MOF pores and functional sites. Here we demonstrate two solvothermal synthesis methods. First, we form a MIL-96(Al) layer on polypropylene fibers using synthetic conditions that convert the metal oxide to MOF. Using initial inorganic films of varying thicknesses, diffusion of the organic linker into the inorganic allows us to control the extent of MOF loading on the fabric. Second, we perform a solvothermal synthesis of UiO-66-NH2 in which the MOF nucleates on the conformal metal oxide coating on polyamide-6 (PA-6) fibers, thereby producing a uniform and conformal thin film of MOF on the fabric. The resulting materials can be directly incorporated into filter devices or protective clothing and eliminate the maladroit qualities of loose powder.


Subject(s)
Metals/chemistry , Oxides/chemistry
11.
ACS Appl Mater Interfaces ; 9(51): 44847-44855, 2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29165990

ABSTRACT

Metal-organic frameworks (MOFs) chemically bound to polymeric microfibrous textiles show promising performance for many future applications. In particular, Zr-based UiO-66-family MOF-textiles have been shown to catalytically degrade highly toxic chemical warfare agents (CWAs), where favorable MOF/polymer bonding and adhesion are attained by placing a nanoscale metal-oxide layer on the polymer fiber preceding MOF growth. To date, however, the nucleation mechanism of Zr-based MOFs on different metal oxides and how product performance is affected are not well understood. Herein, we provide new insight into how different inorganic nucleation films (i.e., Al2O3, ZnO, or TiO2) conformally coated on polypropylene (PP) nonwoven textiles via atomic layer deposition (ALD) influence the quality, overall surface area, and the fractional yield of UiO-66-NH2 MOF crystals solvothermally grown on fiber substrates. Of the materials explored, we find that TiO2 ALD layers lead to the most effective overall MOF/fiber adhesion, uniformity, and a rapid catalytic degradation rate for a CWA simulant, dimethyl p-nitrophenyl phosphate (DMNP) with t1/2 = 15 min, 580-fold faster than the catalytic performance of untreated PP textiles. Interestingly, compared to ALD TiO2 and Al2O3, ALD ZnO induces a larger MOF yield in solution and mass loading on PP fibrous mats. However, this larger MOF yield is ascribed to chemical instability of the ZnO layer under MOF formation condition, leading to Zn2+ ions that promote further homogeneous MOF growth. Insights presented here improve understanding of compatibility between active MOF materials and substrate surfaces, which we believe will help advanced MOF composite materials for a variety of useful functions.

12.
ACS Appl Mater Interfaces ; 9(26): 22042-22054, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28598598

ABSTRACT

Metal-organic frameworks (MOFs) are chemically functionalized micro- and mesoporous materials with high surface areas and are attractive for multiple applications including filtration, gas storage, and catalysis. Postsynthetic modification (PSM), via solution or vapor-based techniques, is a way to impart additional complexity and functionality into these materials. There is a desire to shift toward vapor-phase methods in order to ensure more controlled modification and more efficient reagent and solvent removal from the modified MOF material. In this work we explore how the metal precursors titanium tetrachloride (TiCl4) and trimethylaluminum (TMA), commonly used in atomic layer deposition, react with UiO-66-NH2 MOF. Using in situ quartz crystal microbalance (QCM) and Fourier transform infrared spectroscopy (FTIR) at 150 and 250 °C, we find that the ALD precursors react with µ3-OH hydroxyl and µ3-O bridging oxygen groups on Zr6 nodes, as well as oxygen from carboxylate linker groups. The reactions occur predominantly at the crystal surface at µ3-OH hydroxyl sites, with TiCl4 exhibiting greater diffusion into the MOF subsurface. FTIR analysis suggests that, at 150 °C, both TiCl4 and TMA reversibly dehydroxylate the hydroxylated UiO-66-NH2, which is accompanied by distortion of the zirconium metal clusters. Finally, we show that TiCl4 is able to react with the dehydroxylated UiO-66-NH2 structure, suggesting that TiCl4 is also able to react directly with the bridging oxygens in the metal clusters or carboxylate groups on the organic ligand. A better understanding of chemical and thermally driven MOF dehydroxylation reactions can be important for improved postsynthetic modification of MOFs.

13.
Angew Chem Int Ed Engl ; 55(42): 13224-13228, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27653957

ABSTRACT

The threat associated with chemical warfare agents (CWAs) motivates the development of new materials to provide enhanced protection with a reduced burden. Metal-organic frame-works (MOFs) have recently been shown as highly effective catalysts for detoxifying CWAs, but challenges still remain for integrating MOFs into functional filter media and/or protective garments. Herein, we report a series of MOF-nanofiber kebab structures for fast degradation of CWAs. We found TiO2 coatings deposited via atomic layer deposition (ALD) onto polyamide-6 nanofibers enable the formation of conformal Zr-based MOF thin films including UiO-66, UiO-66-NH2 , and UiO-67. Cross-sectional TEM images show that these MOF crystals nucleate and grow directly on and around the nanofibers, with strong attachment to the substrates. These MOF-functionalized nanofibers exhibit excellent reactivity for detoxifying CWAs. The half-lives of a CWA simulant compound and nerve agent soman (GD) are as short as 7.3 min and 2.3 min, respectively. These results therefore provide the earliest report of MOF-nanofiber textile composites capable of ultra-fast degradation of CWAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...