Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732241

ABSTRACT

Biodegradable (BP) poly(D,L-lactic acid) (PDLLA) membranes are widely used in tissue engineering. Here, we investigate the effects of varying concentrations of PDLLA/gelatin membranes electrospun in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP; C3H2F6O) solvent on their mechanical and physical properties as well as their biocompatibility. Regardless of the environmental conditions, increasing the gelatin content resulted in elevated stress and reduced strain at membrane failure. There was a remarkable difference in strain-to-failure between dry and wet PDLLA/gelatin membranes, with wet strains consistently higher than those of the dry membranes because of the hydrophilic nature of gelatin. A similar wet strain (εw = 2.7-3.0) was observed in PDLLA/gelatin membranes with a gelatin content between 10 and 40%. Both dry and wet stresses increased with increasing gelatin content. The dry stress on PDLLA/gelatin membranes (σd = 6.7-9.7 MPa) consistently exceeded the wet stress (σw = 4.5-8.6 MPa). The water uptake capacity (WUC) improved, increasing from 57% to 624% with the addition of 40% gelatin to PDLLA. PDLLA/gelatin hybrid membranes containing 10 to 20 wt% gelatin exhibited favorable wet mechanical properties (σw = 5.4-6.3 MPa; εw = 2.9-3.0); WUC (337-571%), degradability (11.4-20.2%), and excellent biocompatibility.


Subject(s)
Gelatin , Membranes, Artificial , Polyesters , Gelatin/chemistry , Polyesters/chemistry , Biocompatible Materials/chemistry , Materials Testing , Tissue Engineering/methods , Water/chemistry , Stress, Mechanical , Humans
2.
Tissue Eng Regen Med ; 21(4): 557-569, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483778

ABSTRACT

BACKGROUND: Poly(L-lactic acid) (PLLA) is a biodegradable polymer (BP) that replaces conventional petroleum-based polymers.  The hydrophobicity of biodegradable PLLA periodontal barrier membrane in wet state can be solved by alloying it with natural polymers. Alloying PLLA with gelatin imparts wet mechanical properties, hydrophilicity, shrinkage, degradability and biocompatibility to the polymeric matrix. METHODS: To investigate membrane performance in the wet state, PLLA/gelatin membranes were synthesized by varying the gelatin concentration from 0 to 80 wt%. The membrane was prepared by electrospinning. RESULTS: At the macroscopic scale, PLLA containing gelatin can tune the wet mechanical properties, hydrophilicity, water uptake capacity (WUC), degradability and biocompatibility of PLLA/gelatin membranes. As the gelatin content increased from 0 to 80 wt%, the dry tensile strength of the membranes increased from 6.4 to 38.9 MPa and the dry strain at break decreased from 1.7 to 0.19. PLLA/gelatin membranes with a gelatin content exceeding 40% showed excellent biocompatibility and hydrophilicity. However, dimensional change (37.5% after 7 days of soaking), poor tensile stress  in wet state (3.48 MPa) and rapid degradation rate (73.7%) were observed. The highest WUC, hydrophilicity, porosity, suitable mechanical properties and biocompatibility were observed for the PLLA/40% gelatin membrane. CONCLUSION: PLLA/gelatin membranes with gelatin content less than 40% are suitable as barrier membranes for absorbable periodontal tissue regeneration due to their tunable wet mechanical properties, degradability, biocompatibility and lack of dimensional changes.


Subject(s)
Gelatin , Membranes, Artificial , Polyesters , Gelatin/chemistry , Polyesters/chemistry , Tensile Strength , Biocompatible Materials/chemistry , Materials Testing , Hydrophobic and Hydrophilic Interactions , Humans
3.
Polymers (Basel) ; 15(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37765697

ABSTRACT

Poly(L-lactic acid) (PLLA) and PLLA/gelatin polymers were prepared via electrospinning to evaluate the effect of PLLA and gelatin content on the mechanical properties, water uptake capacity (WUC), water contact angle (WCA), degradation rate, cytotoxicity and cell proliferation of membranes. As the PLLA concentration increased from 1 wt% to 3 wt%, the tensile strength increased from 5.8 MPa to 9.1 MPa but decreased to 7.0 MPa with 4 wt% PLLA doping. The WUC decreased rapidly from 594% to 236% as the PLLA content increased from 1 to 4 wt% due to the increased hydrophobicity of PLLA. As the gelatin content was increased to 3 wt% PLLA, the strength, WUC and WCA of the PLLA/gelatin membrane changed from 9.1 ± 0.9 MPa to 13.3 ± 2.3 MPa, from 329% to 1248% and from 127 ± 1.2° to 0°, respectively, with increasing gelatin content from 0 to 40 wt%. However, the failure strain decreased from 3.0 to 0.5. The biodegradability of the PLLA/gelatin blend increased from 3 to 38% as the gelatin content increased to 40 wt%. The viability of L-929 and MG-63 cells in the PLLA/gelatin blend was over 95%, and the excellent cell proliferation and mechanical properties suggested that the tunable PLLA/gelatin barrier membrane was well suited for absorbable periodontal tissue regeneration.

4.
Materials (Basel) ; 14(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925687

ABSTRACT

Infection is one of several factors that can delay normal wound healing. Antibacterial wound dressings can therefore promote normal wound healing. In this study, we prepared an antibacterial wound dressing, consisting of visible light-cured methacrylated collagen (ColMA) hydrogel and a 2-hydroxypropyl-beta-cyclodextrin (HP-ß-CD)/triclosan (TCS) complex (CD-ic-TCS), and evaluated its wound healing effects in vivo. The 1H NMR spectra of ColMA and CD-ic-TCS revealed characteristic peaks at 1.73, 5.55, 5.94, 6.43, 6.64, 6.84, 6.95, 7.31, and 7.55 ppm, indicating successful preparation of the two material types. In addition, ultraviolet-visible (UV-vis) spectroscopy proved an inclusion complex formation between HP-ß-CD and TCS, judging by a unique peak observed at 280 cm-1. Furthermore, ColMA/CD-ic-TCS exhibited an interconnected porous structure, controlled release of TCS, good biocompatibility, and antibacterial activity. By in vivo animal testing, we found that ColMA/CD-ic-TCS had a superior wound healing capacity, compared to the other hydrocolloids evaluated, due to synergistic interaction between ColMA and CD-ic-TCS. Together, our findings indicate that ColMA/CD-ic-TCS has a clinical potential as an antibacterial wound dressing.

5.
J Nanosci Nanotechnol ; 21(7): 3735-3741, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33715683

ABSTRACT

Nifedipine (NF)-loaded poly(lactic acid) (PLA) and PLA/polyethylene glycol (PLA/PEG) microcapsules are synthesized using a high-speed agitator and a syringe pump with an oil-in-water emulsion-solvent evaporation technique to evaluate the effect of PLA/PEG ratio on morphology and drug release behavior of the capsules. Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimeter (DSC), and X-ray diffraction (XRD) results indicate that PEG reacts successfully with PLA due to the ether bond between PEG and PLA. The drug release rate of PLA and PLA/PEG capsules increases dramatically from 0 to 5 min and then reaches a plateau within 15 to 20 min. Due to the high specific surface area, the amount of NF released is raised by reducing the PLA concentration from 5 wt% to 2 wt%. Unlike PLA capsules, the drug release rate of PLA/PEG capsules increases due to the size effect by varying the PLA/PEG ratio from 10/0 to 6/4. Larger PLA/PEG capsules are attributed to higher amounts of encapsulated NF. The capsules show no evidence of cytotoxicity, suggesting that the PLA and PLA/PEG drug carriers are clinically safe.


Subject(s)
Nifedipine , Polyethylene Glycols , Capsules , Drug Carriers , Drug Liberation , Particle Size , Polyesters , Spectroscopy, Fourier Transform Infrared
6.
Biomed Eng Lett ; 8(3): 267-272, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30603210

ABSTRACT

Thermodynamically immiscible poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) were blended and solution-cast by adding the 3% compatibilizer (tributyl citrate, TBC) of the PCL weight. In the PLA/PCL composition range of 99/1-95/5 wt%, mechanical properties of the PLA/PCL films with TBC were always superior to those of the films without TBC. The tensile strength of 42.9 ± 3.5 MPa and the elongation at break of 10.3 ± 2.7% were observed for the 93/7 PLA/PCL films without TBC, indicating that PCL addition is effective for strength and ductility. However, the tensile strength of 54.1 ± 3.4 MPa and the elongation at break of 8.8 ± 1.8% were found for the 95/5 PLA/PCL with TBC, indicating that the effect of co-addition of PCL and TBC on mechanical properties of the films is more pronounced. No cytotoxicity was observed for the PLA/PCL films regardless of TBC addition.

7.
Biomater Res ; 20(1): 24, 2016.
Article in English | MEDLINE | ID: mdl-27606073

ABSTRACT

BACKGROUND: Hyaluronic acid (HA) dermal biphasic fillers are synthesized for their efficacy in correcting aesthetic defects such as wrinkles, scars and facial contouring defects. The fillers consist of crosslinked HA microspheres suspended in a noncrosslinked HA. To extend the duration of HAs within the dermis and obtain the particle texturing feel, HAs are crosslinked to obtain the suitable mechanical properties. RESULTS: Hyaluronic acid (HA) dermal biphasic fillers are prepared by mixing the crosslinked HA microspheres and the noncrosslinked HAs. The elastic modulus of the fillers increased with raising the volume fraction of the microspheres. The mechanical properties and the particle texturing feel of the fillers made from crosslinked HA (1058 kDa) microspheres suspended in noncrosslinked HA (1368 kDa) are successfully achieved, which are adequate for the fillers. CONCLUSIONS: Dermal biphasic HA fillers made from 1058 kDa exhibit suitable elastic moduli (211 to 420 Pa) and particle texturing feel (scale 7 ~ 9).

8.
J Nanosci Nanotechnol ; 16(5): 5341-4, 2016 May.
Article in English | MEDLINE | ID: mdl-27483928

ABSTRACT

Al-TiO2 nanofibers were prepared using a sol-gel derived electrospinning by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the crystal structure and the photocatalytic activity of Al-TiO2 for methylene blue (MB) degradation. XRD results indicated that as the Al/Ti molar ratio rose, crystal structure of Al-TiO2 was changed from anatase/rutile (undoped), anatase (0.07-0.18), to amorphous phase (0.38-0.73), which was confirmed by XPS and Raman analysis. The degradation kinetic constant increased from 7.3 x 10(-4) min(-1) to 4.5 x 10(-3) min(-1) with the increase of Al/Ti molar ratios from 0 to 0.38, but decreased to 3.4 x 10(-3) min(-1) when the Al/Ti molar ratio reached 0.73. The Al-TiO2 catalyst doped with 0.38 Al/Ti molar ratio demonstrated the best MB degradation. Experimental results indicated that the Al doping in Al-TiO2 was mainly attributed to the crystal structure of TiO2 and the photocatalytic degradation of MB.


Subject(s)
Methylene Blue/chemistry , Nanofibers/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Catalysis/radiation effects , Light , Materials Testing , Methylene Blue/isolation & purification , Methylene Blue/radiation effects , Molecular Conformation/radiation effects , Nanofibers/radiation effects , Nanofibers/ultrastructure , Particle Size , Photochemistry/methods , Titanium/radiation effects , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/radiation effects
9.
J Nanosci Nanotechnol ; 16(2): 1831-3, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27433681

ABSTRACT

Photocatalytic degradation of methylene blue (MB) in water was examined using W-doped TiO2 nanofibers prepared by a sol-gel derived electrospinning and subsequent calcination for 4 h at 550 degrees C. Different concentrations of W dopant in the range of 0 to 8 mol% were synthesized to evaluate the effect of W concentration on the photocatalytic activity of TiO2. XRD results indicated that the undoped TiO2 is composed of anatase and rutile phases. The rutile phase was transformed to anatase phase completely with the W doping. Among W-TiO2 catalysts, the 2 mol% W-TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant increased from 1.04 x 10(-3) min(-1) to 3.54 x 10(-3) min(-1) with the increase of W doping from 0 to 2 mol%, but decreased down to 1.77 x 10(-3) min(-1) when the W content was 8 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with W-TiO2 catalysts than with pure TiO2-

10.
J Nanosci Nanotechnol ; 15(7): 5228-31, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26373112

ABSTRACT

Al-TiO2 thin films were prepared using a sol-gel derived spin coating by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the optical band gap energy (Eg) of the films. GAXRD results indicated that Al-TiO2 is composed of anatase and FTO phases when the Al/Ti molar ratio was less than 0.18. Above 0.38, no other peaks except FTO were found and transparency of the films was severely deteriorated. Eg of Al-TiO2 decreased from 3.20 eV to 2.07 eV when the Al/Ti ratio was raised from 0 to 0.38. Eg of 2.59 eV was found for the anatase Al-TiO2 films having the Al/Ti ratio of 0.18. The absorption band of Al-TiO2 coatings shifted dramatically from the UV region to the visible region with increasing the amount of Al dopant. The Al doping was mainly attributed to the optical band gap energy of Al-TiO2.

11.
J Nanosci Nanotechnol ; 15(1): 566-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26328403

ABSTRACT

Platinum (Pt) doped TiO2 nanofibers were prepared by a sol-gel derived electrospinning and subsequent calcination for 3 h at temperatures from 500 degrees C to 700 degrees C in air. The influence of calcination temperature on crystal structure of the Pt-TiO2 nanofibers was investigated by using an X-ray diffractometer (XRD) and a transmission electron microscope (TEM). The fibers possessed both anatase and rutile phases of TiO2 as a function of the calcination temperature. At 500 degrees C, only anatase phase was observed. However, the rutile phase started to grow with increasing the temperature. At 700 degrees C, 47% of rutile phase with a crystallite size of 31 nm was detected. The continuous and smooth Pt-TiO2 fibers with a diameter of 38 nm were changed to the particulate morphology (at 700 degrees C) with increasing the temperature. This result is particularly important because the calcination temperature is attributed to the fiber morphology and the crystal structure.

12.
J Nanosci Nanotechnol ; 12(2): 1599-603, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22630009

ABSTRACT

The 0.5 mol% Er3+ doped TiO2 (Er(3+)-TiO2) nanofibers were synthesized by a sol-gel derived electrospinning and subsequent calcination for 3 h at 500 degrees C in air. The calcined fibers were examined to evaluate the effect of collector speed and flow rate on morphology of the fibers. The dynamic viscosity and surface tension of precursor solution were 34 cP and 22.7 mN/m, respectively. The Er(3+)-TiO2 nanofibers were electrospun horizontally on the drum rotated at 100-500 rpm and flow rate of 0.2-0.5 mL/h under a DC voltage of 10 kV. The grounded collector is a stainless mandrel placed 12 cm away from the tip of the needle. Beads were observed for the nanofibers prepared at flow rates from 0.2 mL/h to 0.5 mL/h when the collector speed was 100 rpm. The nanofibers increased in diameter slightly from 150 nm to 190 nm as the flow rate was raised from 0.2 mLh to 0.5 mL/h. No beads were found at the collector speed of above 300 rpm when the flow rate was 0.2 mL/h. The optimized flow rate and collector speed of the nanofibers were determined to be in the range of 0.2-0.3 mL/h and 300-400 rpm, respectively. Uniform, smooth and continuous fibers with diameters of 150 to 170 nm were detected. Crystallite size determined by the Scherrer formula was about 6 nm. It can be concluded that the collector speed and the flow rate are influential on the morphology of the Er(3+)-TiO2 nanofibers. The Er(3+)-TiO2 nanofibers, prepared at 0.2 mL/h and 300 rpm, had typical absorption peaks located at 490, 523 and 654 nm, corresponding to the transitions from 4I15/2 to 4F7/2, 2H11/2 and 4F9/2, respectively. The Er(3+)-TiO2 nanofibers showed enhanced photoresponses under visible light.

13.
J Nanosci Nanotechnol ; 12(2): 1608-10, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22630011

ABSTRACT

Nanostructured materials with diameters less than 100 nm have been studied vigorously in recent years. Many studies have been devoted on exceptional optical properties induced by quantum confinement for fundamental research and applications. For excellent luminescence characteristics, phosphor particles have to acquire fine size, narrow size distribution, non-aggregation, good crystalline, and spherical morphology. A liquid-phase reaction method was chosen in this study due to the low reaction temperature. Gd2O3:Eu3+ phosphors were synthesized by the liquid-phase reaction method and the effect of activation temperature on optical properties of the phosphors was investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...