Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Gels ; 9(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38131943

ABSTRACT

The measurement of biosignals in the clinical and healthcare fields is fundamental; however, conventional electrodes pose challenges such as incomplete skin contact and skin-related issues, hindering accurate biosignal measurement. To address these challenges, conductive hydrogels, which are valuable owing to their biocompatibility and flexibility, have been widely developed and explored for electrode applications. In this study, we fabricated a conductive hydrogel by mixing polyethylene glycol diacrylate (PEGDA) with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) polymers dissolved in deionized water, followed by light-triggered crosslinking. Notably, this study pioneered the use of a PEGDA-PEDOT:PSS hydrogel for electrocardiogram (ECG) monitoring- a type of biosignal. The resulting PEGDA-PEDOT:PSS hydrogel demonstrated remarkable conductivity while closely approximating the modulus of skin elasticity. Additionally, it demonstrated biocompatibility and a high signal-to-noise ratio in the waveforms. This study confirmed the exceptional suitability of the PEGDA-PEDOT:PSS hydrogel for accurate biosignal measurements with potential applications in various wearable devices designed for biosignal monitoring.

2.
FEBS Lett ; 596(1): 17-28, 2022 01.
Article in English | MEDLINE | ID: mdl-34778969

ABSTRACT

Phosphodiesterase 5 inhibition (PDE5i) activates cGMP-dependent protein kinase (PKG) and ameliorates heart failure; however, its impact on cardiac mitochondrial regulation has not been fully determined. Here, we investigated the role of the mitochondrial regulator peroxisome proliferator-activated receptor γ co-activator-1α (PGC1α) in the PDE5i-conferred cardioprotection, utilizing PGC1α null mice. In PGC1α+/+ hearts exposed to 7 weeks of pressure overload by transverse aortic constriction, chronic treatment with the PDE5 inhibitor sildenafil improved cardiac function and remodeling, with improved mitochondrial respiration and upregulation of PGC1α mRNA in the myocardium. By contrast, PDE5i-elicited benefits were abrogated in PGC1α-/- hearts. In cultured cardiomyocytes, PKG overexpression induced PGC1α, while inhibition of the transcription factor CREB abrogated the PGC1α induction. Together, these results suggest that the PKG-PGC1α axis plays a pivotal role in the therapeutic efficacy of PDE5i in heart failure.


Subject(s)
Phosphodiesterase 5 Inhibitors
3.
Nat Commun ; 12(1): 1648, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712605

ABSTRACT

Cardiomyocytes undergo significant structural and functional changes after birth, and these fundamental processes are essential for the heart to pump blood to the growing body. However, due to the challenges of isolating single postnatal/adult myocytes, how individual newborn cardiomyocytes acquire multiple aspects of the mature phenotype remains poorly understood. Here we implement large-particle sorting and analyze single myocytes from neonatal to adult hearts. Early myocytes exhibit wide-ranging transcriptomic and size heterogeneity that is maintained until adulthood with a continuous transcriptomic shift. Gene regulatory network analysis followed by mosaic gene deletion reveals that peroxisome proliferator-activated receptor coactivator-1 signaling, which is active in vivo but inactive in pluripotent stem cell-derived cardiomyocytes, mediates the shift. This signaling simultaneously regulates key aspects of cardiomyocyte maturation through previously unrecognized proteins, including YAP1 and SF3B2. Our study provides a single-cell roadmap of heterogeneous transitions coupled to cellular features and identifies a multifaceted regulator controlling cardiomyocyte maturation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Myocytes, Cardiac/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , RNA Splicing Factors/metabolism , Transcription Factors/metabolism , Animals , Calcium/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation , Gene Regulatory Networks , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Peroxisome Proliferator-Activated Receptors/genetics , Pluripotent Stem Cells/metabolism , Signal Transduction , Transcription Factors/genetics , Transcriptome , YAP-Signaling Proteins
4.
Elife ; 3: e02164, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24843018

ABSTRACT

Cardiac progenitor cells (CPCs) must control their number and fate to sustain the rapid heart growth during development, yet the intrinsic factors and environment governing these processes remain unclear. Here, we show that deletion of the ancient cell-fate regulator Numb (Nb) and its homologue Numblike (Nbl) depletes CPCs in second pharyngeal arches (PA2s) and is associated with an atrophic heart. With histological, flow cytometric and functional analyses, we find that CPCs remain undifferentiated and expansive in the PA2, but differentiate into cardiac cells as they exit the arch. Tracing of Nb- and Nbl-deficient CPCs by lineage-specific mosaicism reveals that the CPCs normally populate in the PA2, but lose their expansion potential in the PA2. These findings demonstrate that Nb and Nbl are intrinsic factors crucial for the renewal of CPCs in the PA2 and that the PA2 serves as a microenvironment for their expansion.DOI: http://dx.doi.org/10.7554/eLife.02164.001.


Subject(s)
Gene Deletion , Membrane Proteins/physiology , Myocytes, Cardiac/cytology , Nerve Tissue Proteins/physiology , Stem Cells/cytology , Animals , Cell Lineage , Heart/embryology , Intracellular Signaling Peptides and Proteins , Membrane Proteins/genetics , Mice , Mice, Knockout , Mosaicism , Nerve Tissue Proteins/genetics
5.
Anal Chem ; 86(8): 3825-33, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24673125

ABSTRACT

Cathepsin B has been suggested to be a prognostic marker of melanoma, glioma, and a variety of cancers such as brain, breast, colon, esophageal, gastric, lung, ovarian, and thyroid cancers. Cathepsin B inhibitors have also been considered as anticancer drug candidates; hence, there has been a growing need for a probe which enables the selective and simple detection of cathepsin B and its inhibitors. For the purpose of selective assay, a cathepsin B-specific substrate, N,N'-diBoc-dityrosine-glycine-phenylalanine-3-(methylthio)propylamine (DBDY-Gly-Phe-MTPA) was synthesized in this study. Phe-MTPA, which was produced via cathepsin B-catalyzed hydrolysis of DBDY-Gly-Phe-MTPA, allowed aggregation of gold nanoparticles (AuNPs) leading to a color change from red to blue. When tested for cathepsins B, L, and S, this assay method exhibited AuNPs color change only in reaction to cathepsin B. The limits of detection for cathepsin B was 10 and 5 nM in the 1 and 2 h hydrolysis reactions, respectively. The efficiency of cathepsin B inhibitors such as leupeptin, antipain, and chymostatin was easily compared by the degree of color change. Moreover, IC50 values of leupeptin, antipain, and chymostatin were found to be 0.11, 0.48, and 1.78 µM, respectively, which were similar to the results of previous studies. Therefore the colorimetric assay of cathepsin B and cathepsin B inhibitors using DBDY-Gly-Phe-MTPA and AuNPs allowed not only the selective but also the simple assay of cathepsin B and its inhibitors, which was possible with the naked eye.


Subject(s)
Cathepsin B/antagonists & inhibitors , Cathepsin B/analysis , Colorimetry/methods , Cysteine Proteinase Inhibitors/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Biomarkers, Tumor/analysis , Indicators and Reagents , Oligopeptides/metabolism
6.
Circ Res ; 114(5): 823-32, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24449818

ABSTRACT

RATIONALE: The heart is exquisitely sensitive to mechanical stimuli to adapt rapidly to physiological demands. In muscle lacking dystrophin, such as Duchenne muscular dystrophy, increased load during contraction triggers pathological responses thought to worsen the disease. The relevant mechanotransducers and therapies to target them remain unclear. OBJECTIVES: We tested the role of transient receptor potential canonical (TRPC) channels TRPC3 and TRPC6 and their modulation by protein kinase G (PKG) in controlling cardiac systolic mechanosensing and determined their pathophysiological relevance in an experimental model of Duchenne muscular dystrophy. METHODS AND RESULTS: Contracting isolated papillary muscles and cardiomyocytes from controls and mice genetically lacking either TRPC3 or TRPC6 were subjected to auxotonic load to induce stress-stimulated contractility (SSC, gradual rise in force and intracellular Ca(2+)). Incubation with cGMP (PKG activator) markedly blunted SSC in controls and Trpc3(-/-); whereas in Trpc6(-/-), the resting SSC response was diminished and cGMP had no effect. In Duchenne muscular dystrophy myocytes (mdx/utrophin deficient), the SSC was excessive and arrhythmogenic. Gene deletion or selective drug blockade of TRPC6 or cGMP/PKG activation reversed this phenotype. Chronic phosphodiesterase 5A inhibition also normalized abnormal mechanosensing while blunting progressive chamber hypertrophy in Duchenne muscular dystrophy mice. CONCLUSIONS: PKG is a potent negative modulator of cardiac systolic mechanosignaling that requires TRPC6 as the target effector. In dystrophic hearts, excess SSC and arrhythmia are coupled to TRPC6 and are ameliorated by its targeted suppression or PKG activation. These results highlight novel therapeutic targets for this disease.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Heart/physiology , Muscular Dystrophy, Duchenne/physiopathology , TRPC Cation Channels/metabolism , Animals , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Dystrophin/genetics , Female , Heart/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Papillary Muscles/physiology , Phosphodiesterase 5 Inhibitors/pharmacology , Stress, Mechanical , Systole/drug effects , Systole/physiology , TRPC Cation Channels/genetics , TRPC6 Cation Channel
7.
Proc Natl Acad Sci U S A ; 111(4): 1551-6, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24453217

ABSTRACT

Chronic neurohormonal and mechanical stresses are central features of heart disease. Increasing evidence supports a role for the transient receptor potential canonical channels TRPC3 and TRPC6 in this pathophysiology. Channel expression for both is normally very low but is increased by cardiac disease, and genetic gain- or loss-of-function studies support contributions to hypertrophy and dysfunction. Selective small-molecule inhibitors remain scarce, and none target both channels, which may be useful given the high homology among them and evidence of redundant signaling. Here we tested selective TRPC3/6 antagonists (GSK2332255B and GSK2833503A; IC50, 3-21 nM against TRPC3 and TRPC6) and found dose-dependent blockade of cell hypertrophy signaling triggered by angiotensin II or endothelin-1 in HEK293T cells as well as in neonatal and adult cardiac myocytes. In vivo efficacy in mice and rats was greatly limited by rapid metabolism and high protein binding, although antifibrotic effects with pressure overload were observed. Intriguingly, although gene deletion of TRPC3 or TRPC6 alone did not protect against hypertrophy or dysfunction from pressure overload, combined deletion was protective, supporting the value of dual inhibition. Further development of this pharmaceutical class may yield a useful therapeutic agent for heart disease management.


Subject(s)
Cardiomegaly/genetics , TRPC Cation Channels/antagonists & inhibitors , Animals , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Rats , TRPC Cation Channels/genetics , TRPC6 Cation Channel
8.
Anal Biochem ; 435(2): 166-73, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23348078

ABSTRACT

The increasing number of reports for disease-related proteases has necessitated materials for the fast, sensitive, and specific assessment of protease activities. The purpose of this study was to synthesize and test a dityrosine-based substrate for the selective assay of a specific cysteine cathepsin. DBDY-Gly-INH)2 was synthesized from the conjugation of N,N'-diBoc-dityrosine (DBDY) with two molecules of glycine and isoniazid (INH) for this purpose. The fluorescence of DBDY (λex=284-320nm, λem=400-420nm) disappeared due to the quenching effect of INH. However, the protease-catalyzed hydrolysis resulted in the release of INH and recovered the fluorescence of DBDY. When reacted with 13 proteases, DBDY-Gly-INH)2 was hydrolyzed by the cysteine proteases only. Meeting the growing need to discriminate cysteine cathepsins (e.g., cathepsins B, L, and S found at high levels in various cancers), DBDY-Gly-INH)2 was tested as a substrate for cathepsins B, L, and S. Only cathepsin B catalyzed the hydrolysis reaction among the three cathepsins. The reaction rate followed the Michaelis-Menten kinetics, and the KM and kcat/KM values were 2.88µM and 3.87×10(3)M(-1)s(-1), respectively, which were comparable to those for the materials reported for the selective assay of cathepsin B. Considering the simple preparation of DBDY-(Gly-INH)2, DBDY-(Gly-INH)2 is believed to be valuable for the sensitive and selective assay of cathepsin B activity.


Subject(s)
Cathepsin B/metabolism , Dipeptides/metabolism , Isoniazid/analogs & derivatives , Spectrometry, Fluorescence , Tyrosine/analogs & derivatives , Cysteine Endopeptidases/metabolism , Dipeptides/chemical synthesis , Dipeptides/chemistry , Isoniazid/chemical synthesis , Isoniazid/chemistry , Isoniazid/metabolism , Kinetics , Substrate Specificity , Tyrosine/chemical synthesis , Tyrosine/chemistry , Tyrosine/metabolism
9.
Circulation ; 126(8): 942-51, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22829024

ABSTRACT

BACKGROUND: In the normal heart, phosphodiesterase type 5 (PDE5) hydrolyzes cGMP coupled to nitric oxide- (specifically from nitric oxide synthase 3) but not natriuretic peptide (NP)-stimulated guanylyl cyclase. PDE5 is upregulated in hypertrophied and failing hearts and is thought to contribute to their pathophysiology. Because nitric oxide signaling declines whereas NP-derived cGMP rises in such diseases, we hypothesized that PDE5 substrate selectivity is retargeted to blunt NP-derived signaling. METHODS AND RESULTS: Mice with cardiac myocyte inducible PDE5 overexpression (P5(+)) were crossed to those lacking nitric oxide synthase 3 (N3(-)), and each model, the double cross, and controls were subjected to transaortic constriction. P5(+) mice developed worse dysfunction and hypertrophy and enhanced NP stimulation, whereas N3(-) mice were protected. However, P5(+)/N3(-) mice behaved similarly to P5(+) mice despite the lack of nitric oxide synthase 3-coupled cGMP generation, with protein kinase G activity suppressed in both models. PDE5 inhibition did not alter atrial natriuretic peptide-stimulated cGMP in the resting heart but augmented it in the transaortic constriction heart. This functional retargeting was associated with PDE5 translocation from sarcomeres to a dispersed distribution. P5(+) hearts exhibited higher oxidative stress, whereas P5(+)/N3(-) hearts had low levels (likely owing to the absence of nitric oxide synthase 3 uncoupling). This highlights the importance of myocyte protein kinase G activity as a protection for pathological remodeling. CONCLUSIONS: These data provide the first evidence for functional retargeting of PDE5 from one compartment to another, revealing a role for natriuretic peptide-derived cGMP hydrolysis by this esterase in diseased heart myocardium. Retargeting likely affects the pathophysiological consequence and the therapeutic impact of PDE5 modulation in heart disease.


Subject(s)
Atrial Natriuretic Factor/metabolism , Cardiomegaly/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction/physiology , Animals , Cardiomegaly/pathology , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Disease Models, Animal , Female , Heart Failure/metabolism , Heart Failure/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocardium/enzymology , Myocardium/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Nitric Oxide Synthase Type III/genetics , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Ventricular Remodeling/physiology
10.
Anal Chim Acta ; 723: 101-7, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22444580

ABSTRACT

N,N'-diBoc-dityrosine (DBDY), which was synthesized by the oxidative C-C coupling of 2 N-Boc-L-tyrosine molecules, was conjugated with two isoniazid (INH) molecules. Due to the quenching effect of INH, DBDY-(INH)(2) lacks the fluorescence of DBDY. As such, it was tested for use in the detection of proteases by measuring fluorescence recovery. In this study, serine proteases (chymotrypsin, trypsin, subtilisin, and proteinase K), metalloproteases (thermolysin and carboxypeptidase A, dispase, and collagenase), aspartic proteases (pepsin and aspergillopepsin) and cysteine proteases (papain and chymopapain) were chosen. Reported optimum assay conditions were chosen for each enzyme. Only papain and chymopapain catalyzed the hydrolysis of DBDY-(INH)(2) and led to fluorescence recovery, possibly due to their extensive binding sites and the INH-mediated inhibition of metalloproteases and aspartic proteases.


Subject(s)
Chymopapain/metabolism , Enzyme Assays , Papain/metabolism , Tyrosine/analogs & derivatives , Biocatalysis , Hydrogen-Ion Concentration , Hydrolysis , Spectrometry, Fluorescence , Substrate Specificity , Temperature , Tyrosine/chemical synthesis , Tyrosine/chemistry
11.
Circ Res ; 109(12): 1410-4, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22034490

ABSTRACT

RATIONALE: One of the physiological mechanisms by which the heart adapts to a rise in blood pressure is by augmenting myocyte stretch-mediated intracellular calcium, with a subsequent increase in contractility. This slow force response was first described over a century ago and has long been considered compensatory, but its underlying mechanisms and link to chronic adaptations remain uncertain. Because levels of the matricellular protein thrombospondin-4 (TSP4) rapidly rise in hypertension and are elevated in cardiac stress overload and heart failure, we hypothesized that TSP4 is involved in this adaptive mechanism. OBJECTIVE: To determine the mechano-transductive role that TSP4 plays in cardiac regulation to stress. METHODS AND RESULTS: In mice lacking TSP4 (Tsp4⁻/⁻), hearts failed to acutely augment contractility or activate stretch-response pathways (ERK1/2 and Akt) on exposure to acute pressure overload. Sustained pressure overload rapidly led to greater chamber dilation, reduced function, and increased heart mass. Unlike controls, Tsp4⁻/⁻ cardiac trabeculae failed to enhance contractility and cellular calcium after a stretch. However, the contractility response was restored in Tsp4⁻/⁻ muscle incubated with recombinant TSP4. Isolated Tsp4⁻/⁻ myocytes responded normally to stretch, identifying a key role of matrix-myocyte interaction for TSP4 contractile modulation. CONCLUSION: These results identify TSP4 as myocyte-interstitial mechano-signaling molecule central to adaptive cardiac contractile responses to acute stress, which appears to play a crucial role in the transition to chronic cardiac dilatation and failure.


Subject(s)
Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Stress, Physiological/physiology , Thrombospondins/physiology , Animals , Heart Failure/physiopathology , Hypertension/physiopathology , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Myocytes, Cardiac/cytology , Proto-Oncogene Proteins c-akt/physiology , Rats , Thrombospondins/deficiency , Thrombospondins/genetics
12.
Prostate ; 69(16): 1763-73, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19691128

ABSTRACT

BACKGROUND: Neuroendocrine differentiation and neuroendocrine carcinoma (NEC) have been linked to androgen deprivation in prostate cancers. No previous study has directly connected neuroendocrine phenotypes to chemotherapy. The pathogenesis of prostatic NEC has not yet been determined. METHODS: Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model, we studied tumor progression after hormone ablation (castration) and/or chemotherapy (docetaxel), and analyzed the incidence of NEC as a function of the anti-tumor therapies. Non-treated mice were used as controls. Protein expressions in tumor tissues were analyzed by Western blots and immunohistochemistry. RESULTS: Although all animals developed prostate cancer, no NEC was found in control mice. However, over 30% of the mice that received an anti-tumor therapy developed NEC. A similar incidence of NEC was found in the castration-only and docetaxel-only treatment groups, while a higher incidence was observed in the combined treatment (castration and docetaxel) group. The NEC-bearing mice had smaller tumors in their prostates and lived longer than mice with adenocarcinoma (ADC-only). However, NEC tumors had a higher proliferative index and greater potential for metastasis and drug-resistance, as evidenced by significantly higher expression levels of PCNA, S100A4, and Pgp, but lower levels of E-cadherin. SV40 T-antigen was highly expressed in both NEC and ADC tumors. CONCLUSIONS: Stress induced by anti-cancer treatments may play a role in NEC development. Although NEC and ADC differ in their expressions of many proteins, a high level of SV40 T-antigen in both tumor types suggest a common progenitor..


Subject(s)
Adenocarcinoma/drug therapy , Androgen Antagonists/adverse effects , Antineoplastic Agents/adverse effects , Carcinoma, Neuroendocrine/chemically induced , Prostatic Neoplasms/drug therapy , Taxoids/adverse effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/secondary , Androgen Antagonists/administration & dosage , Animals , Antineoplastic Agents/administration & dosage , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/secondary , Cell Proliferation , Docetaxel , Drug Therapy, Combination , Incidence , Male , Mice , Mice, Transgenic , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Survival Analysis , Taxoids/administration & dosage
13.
J Hazard Mater ; 155(1-2): 334-41, 2008 Jun 30.
Article in English | MEDLINE | ID: mdl-18241984

ABSTRACT

With increasing concern about the contamination of aquatic environments by estrogenic pollutants, removal of synthetic estrogens such as 17alpha-ethinylestradiol (EE2) has been widely studied, especially with respect to the treatment methods. However, the degradation products have rarely been identified. The purpose of this study was to identify structurally the oxidation products of EE2. Mn(III) was used as an oxidizing agent. To obtain sufficient oxidation products for HPLC, LC-MS and NMR spectroscopy, a highly concentrated solution of EE2 (1mM) was prepared in a mixture of water and a water-miscible organic solvent. From HPLC of the reaction products, a single compound (I) was found to be predominant. From LC-MS, its molecular mass was found to be 294, and two hydrogens were believed to have been removed from EE2 (M.W. 296) to form a C=C . The structure of compound I (position of the double bond) was determined using 1H NMR, 13C NMR, H-H COSY, HSQC and HMBC. As minor products, isomeric dimers (M.W. 590) of EE2, as well as the products (M.W. 588) in which EE2 was coupled to compound I were also formed during the Mn(III)-mediated oxidation of EE2.


Subject(s)
Estrogens/chemistry , Ethinyl Estradiol/chemistry , Manganese/chemistry , Oxidants/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods , Water Purification/methods
14.
J Phys Chem B ; 110(51): 25582-5, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181189

ABSTRACT

Two-photon absorption spectroscopy is an intensity dependent nonlinear effect related to the excitation of virtual intermediate states. The classical two-photon absorption has an extremely low efficiency which is quantified by its cross-section (delta approximately 10(-48) cm4 s at 800 nm). To overcome this limitation, we demonstrate a novel effect of the two-photon absorption method utilizing the high degree of quantum optical correlation between photon pairs created by the process of spontaneous parametric downconversion. A large entangled two-photon absorption cross-section (delta(e) approximately 10(-17) cm2 at 800 nm) was measured in an organic porphyrin dendrimer. We also discuss the nonmonotonic behavior of variation of the entangled two-photon absorption cross-section by controlling the entanglement time. This novel effect may open new avenues for ultrasensitive detection in chemical and biological systems. TPA spectroscopy has been considered as a powerful tool in physics, chemistry, and biology. The inherent nonlinear process of the classical TPA is distinguishable from the single photon absorption (SPA) linear process. Although the benefits of greater penetration depth and better control and reduction of scattering, the TPA spectroscopy has been restricted by the necessity of a high power optical source due to the low efficiency of the TPA effect. The use of entangled photons from a correlated source for the purpose of the two-photon effect is promising in this regard as one may obtain two-photon effects with very small numbers of photons.

15.
Opt Express ; 11(8): 944-51, 2003 Apr 21.
Article in English | MEDLINE | ID: mdl-19461811

ABSTRACT

When two electromagnetic fields of different frequencies are physically superposed, the linear superposition equation implies that the fields readjust themselves into a new mean frequency whose common amplitude undulates at half their difference frequency. Neither of these mathematical frequencies are measurable quantities. We present a set of experiments underscoring that optical fields do not interfere with each other or modify themselves into a new frequency even when they are physically superposed. The multi-frequency interference effects are manifest only in materials with broad absorption bands as their constituent diploes attempt to respond collectively and simultaneously to all the optical frequencies of the superposed fields. Interference is causal and real since the dipoles carry out the operation of summation dictated by their quantum mechanical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...