Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271971

ABSTRACT

Silica aerogels have attracted much attention owing to their excellent thermal insulation properties. However, the conventional synthesis of silica aerogels involves the use of expensive and toxic alkoxide precursors and surface modifiers such as trimethylchlorosilane. In this study, cost-effective water-glass silica aerogels were synthesized using an eco-friendly catechol derivative surface modifier instead of trimethylchlorosilane. Polydopamine was introduced to increase adhesion to the SiO2 surface. The addition of 4-tert-butyl catechol and hexylamine imparted hydrophobicity to the surface and suppressed the polymerization of the polydopamine. After an ambient pressure drying process, catechol-modified aerogel exhibited a specific surface area of 377 m2/g and an average pore diameter of approximately 21 nm. To investigate their thermal conductivities, glass wool sheets were impregnated with catechol-modified aerogel. The thermal conductivity was 40.4 mWm-1K-1, which is lower than that of xerogel at 48.7 mWm-1K-1. Thus, by precisely controlling the catechol coating in the mesoporous framework, an eco-friendly synthetic method for aerogel preparation is proposed.

2.
RSC Adv ; 9(24): 13714-13721, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-35519563

ABSTRACT

In this article, the facile synthesis of sea urchin-shaped LiFePO4 nanoparticles by thermal decomposition of metal-surfactant complexes and application of these nanoparticles as a cathode in lithium ion secondary batteries is demonstrated. The advantages of this work are a facile method to synthesize interesting LiFePO4 nanostructures and its synthetic mechanism. Accordingly, the morphology of LiFePO4 particles could be regulated by the injection of oleylamine, with other surfactants and phosphoric acid. This injection step was critical to tailor the morphology of LiFePO4 particles, converting them from nanosphere shapes to diverse types of urchin-shaped nanoparticles. Electron microscopy analysis showed that the overall dimension of the urchin-shaped LiFePO4 particles varied from 300 nm to 2 µm. A closer observation revealed that numerous thin nanorods ranging from 5 to 20 nm in diameter were attached to the nanoparticles. The hierarchical nanostructure of these urchin-shaped LiFePO4 particles mitigated the low tap density problem. In addition, the nanorods less than 20 nm attached to the edge of urchin-shaped nanoparticles significantly increased the pathways for electronic transport.

4.
Anal Chem ; 89(6): 3639-3647, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28225617

ABSTRACT

Particles in a viscoelastic fluid are typically focused at the center and four corners of a rectangular channel because of the combination of fluid elasticity and inertia forces. In this study, we observe the transition between single-line and multiple-line particle focusing in a microfluidic device induced by the synergetic effect of inertia and viscoelasticity. The elastic and inertial forces acting on suspended particles are manipulated by controlling the concentration of dilute polymer solution and the flow rate of a fluid. The finding shows that the confinement effects determined by the channel aspect ratio and the inlet geometry lead to the multiple-line focusing of particles in the microfluidic channel due to the fluid elasticity and hydrodynamic behavior of the fluid. A microfluidic channel with high channel aspect ratio possesses broad minimal region of the elastic force across the channel, which generates a wide particle focusing band rather than a single particle focusing at the center. The multiple-line particle focusing occurs as the inertial force outweighs the elastic force, resulting in the particle migration toward the channel sidewalls.

6.
Sci Rep ; 3: 3258, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24247252

ABSTRACT

We introduce a multiplex particle focusing phenomenon that arises from the hydrodynamic interaction between the viscoelastic force and the Dean drag force in a microfluidic device. In a confined microchannel, the first normal stress difference of viscoelastic fluids results in a lateral migration of suspended particles. Such a viscoelastic force was harnessed to focus different sized particles in the middle of a microchannel, and spiral channel geometry was also considered in order to take advantage of the counteracting force, Dean drag force that induces particle migration in the outward direction. For theoretical understanding, we performed a numerical analysis of viscoelastic fluids in the spiral microfluidic channel. From these results, a concept of the 'Dean-coupled Elasto-inertial Focusing band (DEF)' was proposed. This study provides in-depth physical insight into the multiplex focusing of particles that can open a new venue for microfluidic particle dynamics for a concrete high throughput platform at microscale.

7.
ACS Nano ; 6(9): 7656-64, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-22928700

ABSTRACT

Superhydrophobicity of multiscale hierarchical structures and bouncing phenomenon of a water droplet on the superhydrophobic surface were studied. The multiscale hierarchical structures of carbon nanotube/ZnO and ZnO/carbon nanofiber were produced by the hydrothermal method. The multiscale hierarchical structure showed superhydrophobicity with a static contact angle (CA) larger than 160° due to increased air pockets in the Cassie-Baxter state. The water bouncing effect observed on the multiscale hierarchical nanostructure was explained by the free energy barrier (FEB) analysis and finite element simulation. The multiscale hierarchical nanostructure showed low FEBs which provoke high CA and bouncing phenomenon due to small energy dissipation toward receding and advancing directions.


Subject(s)
Crystallization/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Water/chemistry , Zinc Oxide/chemistry , Hydrophobic and Hydrophilic Interactions , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
8.
Langmuir ; 28(28): 10488-94, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22717057

ABSTRACT

We explored a liquid slip, referred to as the Navier slip, at liquid-solid interface. Such a slip is provoked by the physicochemical features of the liquid-solid system. The goal of this study was to investigate the effect of a nanoengineered surface structure on liquid slip by fabricating the self-assembly structure of nano Zinc oxide (n-ZnO). We have also examined how the liquid-solid surface interaction controlled by hydrophobic chemical treatment affects the liquid slip. The findings showed that liquid slip increases with decreasing the characteristic length scales (e.g., channel height and depth), resulting in drag reduction. It was also found that dewetted (Cassie) state due to the generation of air gap developed by n-ZnO was more critical for the liquid slip than the minimization of interface interaction. The linear and nonlinear Navier slip models showed that liquid slip behavior is more obvious when increasing the nonlinearity. This study will contribute to understanding of the underlying physics behind fluid slip phenomena, such as the Navier slip for Newtonian liquids and Maxwell's slip for Newtonian gases.

SELECTION OF CITATIONS
SEARCH DETAIL
...