Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 18(9): 1005-1011, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37217765

ABSTRACT

The oxides of platinum group metals are promising for future electronics and spintronics due to the delicate interplay of spin-orbit coupling and electron correlation energies. However, their synthesis as thin films remains challenging due to their low vapour pressures and low oxidation potentials. Here we show how epitaxial strain can be used as a control knob to enhance metal oxidation. Using Ir as an example, we demonstrate the use of epitaxial strain in engineering its oxidation chemistry, enabling phase-pure Ir or IrO2 films despite using identical growth conditions. The observations are explained using a density-functional-theory-based modified formation enthalpy framework, which highlights the important role of metal-substrate epitaxial strain in governing the oxide formation enthalpy. We also validate the generality of this principle by demonstrating epitaxial strain effect on Ru oxidation. The IrO2 films studied in our work further revealed quantum oscillations, attesting to the excellent film quality. The epitaxial strain approach we present could enable growth of oxide films of hard-to-oxidize elements using strain engineering.

2.
Proc Natl Acad Sci U S A ; 119(23): e2202189119, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35653574

ABSTRACT

SignificanceSemiconductor interfaces are among the most important in use in modern technology. The properties they exhibit can either enable or disable the characteristics of the materials they connect for functional performance. While much is known about important junctions involving conventional semiconductors such as Si and GaAs, there are several unsolved mysteries surrounding interfaces between oxide semiconductors. Here we resolve a long-standing issue concerning the measurement of anomalously low dielectric constants in SrTiO3 films with record high electron mobilities. We show that the junction between doped and undoped SrTiO3 required to make dielectric constant measurements masks the dielectric properties of the undoped film. Through modeling, we extract the latter and show that it is much higher than previously measured.

3.
Sci Adv ; 8(21): eabl5668, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35613270

ABSTRACT

The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low defect density. Using hybrid molecular beam epitaxy (MBE), SrTiO3 films with a low-temperature mobility exceeding 42,000 cm2 V-1 s-1 at a low carrier density of 3 × 1017 cm-3 were achieved. A sudden and sharp decrease in residual resistivity accompanied by an enhancement in the superconducting transition temperature were observed across the second Lifshitz transition where the third band becomes occupied, revealing dominant intraband scattering. These films further revealed an anomalous behavior in the Hall carrier density as a consequence of the antiferrodistortive (AFD) transition and the temperature dependence of the Hall scattering factor. Using hybrid MBE growth, phenomenological modeling, temperature-dependent transport measurements, and scanning superconducting quantum interference device imaging, we provide critical insights into the important role of inter- versus intraband scattering and of AFD domain walls on normal-state and superconducting properties of SrTiO3.

4.
J Phys Chem Lett ; 13(1): 75-82, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34958580

ABSTRACT

Octahedral symmetry is one of the parameters to tune the functional properties of complex oxides. VO2, a complex oxide with a 3d1 electronic system, exhibits an insulator-metal transition (IMT) near room temperature (∼68 °C), accompanying a change in the octahedral structure from asymmetrical to symmetrical. However, the role of octahedral symmetry in VO2 on the IMT characteristics is unclear. Crystal and electronic structure analyses combined with density-functional-theory calculations showed the bandwidth-controlled IMT characteristics of monoclinic VO2 with high octahedral symmetry. The expanded apical V-O length for a high octahedral symmetry of a VO2 film increased the bandwidth of the conduction band by depressing V 3d-O 2p hybridization. As a result, the interdimer hopping energy increased and thereby decreased the IMT temperature, although the short V-V chain enhanced electron correlation. These findings suggest that octahedral symmetry can control the IMT characteristics of VO2 by changing the orbital occupancy.

5.
J Phys Chem Lett ; 11(22): 9680-9688, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33135900

ABSTRACT

Studies on the hydrogen incorporated M1 phase of VO2 film have been widely reported. However, there are few works on an M2 phase of VO2. Recently, the M2 phase in VO2 has received considerable attention due to the possibility of realizing a Mott transition field-effect transistor. By varying the postannealing environment, systematic variations of the M2 phase in (020)-oriented VO2 films grown on Al2O3(0001) were observed. The M2 phase converted to the metallic M1 phase at first and then to the metallic rutile phase after hydrogen annealing (i.e., for H2/N2 mixture and H2 environments). From the diffraction and spectroscopy measurements, the transition is attributed to suppressed electron interactions, not structural modification caused by hydrogen incorporation. Our results suggest the understanding of the phase transition process of the M2 phase by hydrogen incorporation and the possibility of realization of the M2 phased-based Mott transition field-effect transistor.

6.
ACS Omega ; 4(25): 21509-21515, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31867547

ABSTRACT

Theoretically, the edges of a MoS2 flake and S-vacancy within the lattice have nearly zero Gibbs free energy for hydrogen adsorption, which is essentially correlated to the exchange currents in hydrogen evolution reaction (HER). However, MoS2 possesses insufficient active sites (edges and S-vacancies) in pristine form. Interestingly, active sites can be effectively engineered within the continuous MoS2 sheets by treating it with plasma in a controlled manner. Here, we employed N2 plasma on a large-area continuous-monolayer MoS2 synthesized via metal-organic chemical vapor deposition to acquire maximum active sites that are indeed required for an efficient HER performance. The MoS2 samples with maximum active sites were acquired by optimizing the plasma exposure time. The newly induced edges and S-vacancies were directly verified by high-resolution transmission electron microscopy. The 20 min treated MoS2 sample showed maximum active sites and thereby maximum HER activity, onset overpotential of ∼-210 mV vs reversible hydrogen electrode (RHE), and Tafel slope of ∼89 mV/dec. Clearly, the above results show that this approach can be employed for improving the HER efficiency of large-scale MoS2-based electrocatalysts.

7.
Sci Rep ; 9(1): 19246, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31848440

ABSTRACT

The variation in energy bandgaps of amorphous oxide semiconducting SiZnSnO (a-SZTO) has been investigated by controlling the oxygen partial pressure (Op). The systematic change in Op during deposition has been used to control the electrical characteristics and energy bandgap of a-SZTO. As Op increased, the electrical properties degraded, while the energy bandgap increased systematically. This is mainly due to the change in the oxygen vacancy inside the a-SZTO thin film by controlling Op. Changes in oxygen vacancies have been observed by using X-ray photoelectron spectroscopy (XPS) and investigated by analyzing the variation in density of states (DOS) inside the energy bandgaps. In addition, energy bandgap parameters, such as valence band level, Fermi level, and energy bandgap, were extracted by using ultraviolet photoelectron spectroscopy, Kelvin probe force microscopy, and high-resolution electron energy loss spectroscopy. As a result, it was confirmed that the difference between the conduction band minimum and the Fermi level in the energy bandgap increased systematically as Op increases. This shows good agreement with the measured results of XPS and DOS analyses.

8.
ACS Appl Mater Interfaces ; 10(23): 20025-20031, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29786431

ABSTRACT

Over the last decades, the spin-coating (SC) technique has been widely used to prepare thin films of various materials in the liquid phase on arbitrary substrates. The technique simply relies on the centrifugal force to spread a coating solution radially outward over the substrate. This mechanism works fairly well for solutions with low surface tension to form thin films of reasonable junctions on smooth substrates. Here, we present a modified SC technique, namely, ultrasonic-assisted spin-coating (UASC), to form thin films of coating solution having high surface tension on rough substrates with excellent junctions. The UASC technique couples SC with an external ultrasonic wave generator to provide external perturbation to locally break down big drops of the coating material into smaller droplets via Rayleigh instability. Because of their lower mass, these tiny droplets gain low momenta and move slowly both in radial and azimuthal directions, giving them an enough time to effectively permeate within pores, thereby yielding excellent junctions. Furthermore, we also investigated the effect of junction improvement on conventional and inverted bulk heterojunction organic solar cells. Intriguingly, the organic solar cells fabricated by the UASC method showed an improved efficiency compared to typical SC owing to efficient charge transfer across the junction. These results clearly imply that UASC is a simple and powerful technique which can significantly enhance the device performance by improving the junction. Moreover, we believe that UASC can be more effective for the preparation of devices composed of multilayers of different materials having complicated nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...