Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1416253, 2024.
Article in English | MEDLINE | ID: mdl-38845849

ABSTRACT

This study presents a comprehensive genomic analysis of Burkholderia plantarii, a rice pathogen that causes blight and grain rot in seedlings. The entire genome of B. plantarii KACC 18964 was sequenced, followed by a comparative genomic analysis with other available genomes to gain insights into its virulence, fitness, and interactions with rice. Multiple secondary metabolite gene clusters were identified. Among these, 12 demonstrated varying similarity levels to known clusters linked to bioactive compounds, whereas eight exhibited no similarity, indicating B. plantarii as a source of potentially novel secondary metabolites. Notably, the genes responsible for tropolone and quorum sensing were conserved across the examined genomes. Additionally, B. plantarii was observed to possess three complete CRISPR systems and a range of secretion systems, exhibiting minor variations among the analyzed genomes. Genomic islands were analyzed across the four genomes, and a detailed study of the B. plantarii KACC 18964 genome revealed 59 unique islands. These islands were thoroughly investigated for their gene contents and potential roles in virulence. Particular attention has been devoted to the Type III secretion system (T3SS), a crucial virulence factor. An in silico analysis of potential T3SS effectors identified a conserved gene, aroA. Further mutational studies, in planta and in vitro analyses validated the association between aroA and virulence in rice. Overall, this study enriches our understanding of the genomic basis of B. plantarii pathogenicity and emphasizes the potential role of aroA in virulence. This understanding may guide the development of effective disease management strategies.

2.
Plants (Basel) ; 12(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068569

ABSTRACT

Rice (Oryzae sativa cv. dongjin) is a cornerstone of global food security; however, Burkholderia glumae BGR1, which is responsible for bacterial panicle blight (BPB), threatens its productive output, with dire consequences for rice and other crops. BPB is primarily caused by toxoflavin, a potent phytotoxin that disrupts plant growth at various developmental stages. Therefore, understanding the mechanisms through which toxoflavin and BPB affect rice plants is critical. Toxoflavin biosynthesis in B. glumae BGR1 relies on the toxABCDE operon, with ToxA playing a central role. In response to this threat, our study explores a metagenome-derived toxoflavin-degrading enzyme, TxeA, as a potential defense mechanism against toxoflavin's destructive impact. TxeA-induced degradation of toxoflavin represents a potential strategy to mitigate crop damage. We introduce a groundbreaking approach: engineering transgenic rice plants to produce toxoflavin-degrading enzymes. These genetically modified plants, armed with TxeA, hold significant potential for combating toxoflavin-related crop losses. However, removal of toxoflavin, a major virulence factor in B. glumae BGR1, does not completely inhibit virulence. This innovative perspective offers a new shift from pathogen eradication to leveraging transgenic plants' power, offering a beacon of hope for crop protection and disease management. Our study offers insights into the intricate interplay between toxoflavin, BPB, and TxeA, providing a promising avenue to safeguard rice crops, ensure food security, and potentially enhance the resilience of various agricultural crops to B. glumae BGR1-induced diseases.

3.
Microb Genom ; 9(10)2023 10.
Article in English | MEDLINE | ID: mdl-37796250

ABSTRACT

Members of the genus Chryseobacterium have attracted great interest as beneficial bacteria that can promote plant growth and biocontrol. Given the recent risks of climate change, it is important to develop tolerance strategies for efficient applications of plant-beneficial bacteria in saline environments. However, the genetic determinants of plant-growth-promoting and halotolerance effects in Chryseobacterium have not yet been investigated at the genomic level. Here, a comparative genomic analysis was conducted with seven Chryseobacterium species. Phylogenetic and phylogenomic analyses revealed niche-specific evolutionary distances between soil and freshwater Chryseobacterium species, consistent with differences in genomic statistics, indicating that the freshwater bacteria have smaller genome sizes and fewer genes than the soil bacteria. Phosphorus- and zinc-cycling genes (required for nutrient acquisition in plants) were universally present in all species, whereas nitrification and sulphite reduction genes (required for nitrogen- and sulphur-cycling, respectively) were distributed only in soil bacteria. A pan-genome containing 6842 gene clusters was constructed, which reflected the general features of the core, accessory and unique genomes. Halotolerant species with an accessory genome shared a Kdp potassium transporter and biosynthetic pathways for branched-chain amino acids and the carotenoid lycopene, which are associated with countermeasures against salt stress. Protein-protein interaction network analysis was used to define the genetic determinants of Chryseobacterium salivictor NBC122 that reduce salt damage in bacteria and plants. Sixteen hub genes comprised the aromatic compound degradation and Por secretion systems, which are required to cope with complex stresses associated with saline environments. Horizontal gene transfer and CRISPR-Cas analyses indicated that C. salivictor NBC122 underwent more evolutionary events when interacting with different environments. These findings provide deep insights into genomic adaptation to dynamic interactions between plant-growth-promoting Chryseobacterium and salt stress.


Subject(s)
Chryseobacterium , Chryseobacterium/genetics , Phylogeny , Comparative Genomic Hybridization , Genomics , Soil
4.
Microbiol Spectr ; 11(6): e0242623, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37861313

ABSTRACT

IMPORTANCE: Traditional control methods for postharvest diseases rely on fungicides, which cause human health and environmental concerns. This study introduces a taxonomy-guided strategy for selecting biocontrol agents. By focusing on Paraburkholderia group, which harbors diverse plant-beneficial strains, the inadvertent selection of harmful strains was circumvented, thereby obviating the need for laborious in vitro screening assays. A highly promising candidate, strain P39, has been identified, exhibiting remarkable biocontrol activity against Colletotrichum scovillei. Through comprehensive genomic, physiological, and biochemical analyses, P39 was characterized as a novel species within the Paraburkholderia genus and designated Paraburkholderia busanensis. Moreover, these findings deepen our understanding of bacterial-fungal interactions, as they elucidate a potential pathway for the utilization of fungal chitin, thereby enhancing our understanding of bacterial mycophagy. P. busanensis is a promising source of antifungal volatiles and putative novel secondary metabolites.


Subject(s)
Colletotrichum , Fungicides, Industrial , Humans , Food , Colletotrichum/genetics , Antifungal Agents , Plant Diseases/prevention & control , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...