Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Protein Sci ; 33(2): e4860, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38149326

ABSTRACT

Cystathionine- ß $$ \beta $$ -synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They mediate magnesium homeostasis directly by transport of Mg2+ ions and indirectly by regulation of the transient receptor potential ion channel subfamily M member 7 (TRPM7). Here, we report the crystal structure of the extracellular domain of tapeworm CNNM4. The domain forms a dimer of immunoglobulin-like (Ig-like) folds with electron density observed for three glycosylation sites. Analytical ultracentrifugation confirms that mutations in the extracellular domain of human CNNM4 prevent its dimerization. An analogous mutation in mouse CNNM2 impairs its activity in a cellular assay of Mg2+ transport.


Subject(s)
Cation Transport Proteins , TRPM Cation Channels , Humans , Mice , Animals , Dimerization , Magnesium/chemistry , Mutation , Membrane Transport Proteins , Homeostasis , Protein Serine-Threonine Kinases/genetics , TRPM Cation Channels/genetics , Cation Transport Proteins/chemistry
2.
Elife ; 122023 Jul 14.
Article in English | MEDLINE | ID: mdl-37449820

ABSTRACT

Cystathionine-ß-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They promote efflux of Mg2+ ions on their own and influx of divalent cations when expressed with the transient receptor potential ion channel subfamily M member 7 (TRPM7). Recently, ADP-ribosylation factor-like GTPase 15 (ARL15) has been identified as CNNM-binding partner and an inhibitor of divalent cation influx by TRPM7. Here, we characterize ARL15 as a GTP and CNNM-binding protein and demonstrate that ARL15 also inhibits CNNM2 Mg2+ efflux. The crystal structure of a complex between ARL15 and CNNM2 CBS-pair domain reveals the molecular basis for binding and allowed the identification of mutations that specifically block binding. A binding deficient ARL15 mutant, R95A, failed to inhibit CNNM and TRPM7 transport of Mg2+ and Zn2+ ions. Structural analysis and binding experiments with phosphatase of regenerating liver 2 (PRL2 or PTP4A2) showed that ARL15 and PRLs compete for binding CNNM to coordinate regulation of ion transport by CNNM and TRPM7.


Subject(s)
Monomeric GTP-Binding Proteins , TRPM Cation Channels , Cations, Divalent , TRPM Cation Channels/genetics , Protein Binding , Biological Transport
SELECTION OF CITATIONS
SEARCH DETAIL