Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Med Oncol ; 2008(2): 169-179, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-20401333

ABSTRACT

Disruptions of beta-catenin and the canonical Wnt pathway are well documented in cancer. However, little is known of the non-canonical branch of the Wnt pathway. In this study, we investigate the transcript level patterns of genes in the Wnt pathway in squamous cell lung cancer using reverse-transcriptase (RT)-PCR. It was found that over half of the samples examined exhibited dysregulated gene expression of multiple components of the non-canonical branch of the WNT pathway. In the cases where beta catenin (CTNNB1) was not over-expressed, we identified strong relationships of expression between wingless-type MMTV integration site family member 5A (WNT5A)/ frizzled homolog 2 (FZD2), frizzled homolog 3 (FZD3) / dishevelled 2 (DVL2), and low density lipoprotein receptor-related protein 5 (LRP5)/ secreted frizzled-related protein 4 (SFRP4). This is one of the first studies to demonstrate expression of genes in the non-canonical pathway in normal lung tissue and its disruption in lung squamous cell carcinoma. These findings suggest that the non-canonical pathway may have a more prominent role in lung cancer than previously reported.

2.
Genes Chromosomes Cancer ; 46(12): 1069-79, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17726699

ABSTRACT

The multidrug resistant (MDR) phenotype is often attributed to the activity of ATP-binding cassette (ABC) transporters such as P-glycoprotein (ABCB1). Previous work has suggested that modulation of MDR may not necessarily be a single gene trait. To identify factors that contribute to the emergence of MDR, we undertook integrative genomics analysis of the ovarian carcinoma cell line SKOV3 and a series of MDR derivatives of this line (SKVCRs). As resistance increased, comparative analysis of gene expression showed conspicuous activation of a network of genes in addition to ABCB1. Functional annotation and pathway analysis revealed that many of these genes were associated with the extracellular matrix and had previously been implicated in tumor invasion and cell proliferation. Further investigation by whole genome tiling-path array CGH suggested that changes in gene dosage were key to the activation of several of these overexpressed genes. Remarkably, alignment of whole genome profiles for SKVCR lines revealed the emergence and decline of specific segmental DNA alterations. The most prominent alteration was a novel amplicon residing at 16p13 that encompassed the ABC transporter genes ABCC1 and ABCC6. Loss of this amplicon in highly resistant SKVCR lines coincided with the emergence of a different amplicon at 7q21.12, which harbors ABCB1. Integrative analysis suggests that multiple genes are activated during escalation of drug resistance, including a succession of ABC transporter genes and genes that may act synergistically with ABCB1. These results suggest that evolution of the MDR phenotype is a dynamic, multi-genic process in the genomes of cancer cells.


Subject(s)
Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Multidrug Resistance-Associated Proteins/genetics , Ovarian Neoplasms/genetics , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cell Line, Tumor , Drug Resistance, Multiple/genetics , Evolution, Molecular , Female , Gene Expression Profiling , Gene Regulatory Networks , Genomics , Humans , Ovarian Neoplasms/metabolism , Phenotype
3.
Genes Chromosomes Cancer ; 45(1): 11-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16130125

ABSTRACT

Small-cell lung cancer (SCLC) is a highly aggressive lung neoplasm, which accounts for 20% of yearly lung cancer cases. The lack of knowledge of the progenitor cell type for SCLC precludes the definition of a normal gene expression profile and has hampered the identification of gene expression changes, while the low resolution of conventional genomic screens such as comparative genomic hybridization (CGH) and loss of heterozygosity analysis limit our ability to fine-map genetic alterations. The recent advent of whole genome tiling path array CGH enables profiling of segmental DNA copy number gains and losses at a resolution 100 times that of conventional methods. Here we report the analysis of 14 SCLC cell lines and six matched normal B-lymphocyte lines. We detected 7p22.3 copy number gain in 13 of the 14 SCLC lines and 0 of the 6 matched normal lines. In 4 of the 14 cell lines, this gain is present as a 350 kbp gene specific copy number gain centered at MAD1L1 (the human homologue of the yeast gene MAD1). Fluorescence in situ hybridization validated the array CGH finding. Intriguingly, MAD1L1 has been implicated to have tumor-suppressing functions. Our data suggest a more complex role for this gene, as MAD1L1 is the most frequent copy number gain in SCLC cell lines.


Subject(s)
Carcinoma, Small Cell/genetics , Cell Cycle Proteins/genetics , Chromosomes, Human, Pair 7/genetics , Gene Dosage , Lung Neoplasms/genetics , Nuclear Proteins/genetics , B-Lymphocytes/cytology , Cell Line , Cell Line, Tumor , Gene Expression Profiling , Humans , In Situ Hybridization, Fluorescence , Oligonucleotide Array Sequence Analysis
4.
J Biol Chem ; 278(13): 11032-40, 2003 Mar 28.
Article in English | MEDLINE | ID: mdl-12538644

ABSTRACT

Functional inactivation of the von Hippel-Lindau (VHL) tumor suppressor protein is the cause of familial VHL disease and sporadic kidney cancer. The VHL gene product (pVHL) is a component of an E3 ubiquitin ligase complex that targets the hypoxia-inducible factor (HIF) 1 and 2 alpha subunits for polyubiquitylation. This process is dependent on the hydroxylation of conserved proline residues on the alpha subunits of HIF-1/2 in the presence of oxygen. In our effort to identify orphan HIF-like proteins in the data base that are potential targets of the pVHL complex, we report multiple splice variants of the human HIF-3 alpha locus as follows: hHIF-3 alpha 1, hHIF-3 alpha 2 (also referred to as hIPAS; human inhibitory PAS domain protein), hHIF-3 alpha 3, hHIF-3 alpha 4, hHIF-3 alpha 5, and hHIF-3 alpha 6. We demonstrate that the common oxygen-dependent degradation domain of hHIF-3 alpha 1-3 splice variants is targeted for ubiquitylation by the pVHL complex in vitro and in vivo. This activity is enhanced in the presence of prolyl hydroxylase and is dependent on a proline residue at position 490. Furthermore, the ubiquitin conjugation occurs on lysine residues at position 465 and 568 within the oxygen-dependent degradation domain. These results demonstrate additional targets of the pVHL complex and suggest a growing complexity in the regulation of hypoxia-inducible genes by the HIF family of transcription factors.


Subject(s)
Alternative Splicing , Ligases/metabolism , Transcription Factors/genetics , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Apoptosis Regulatory Proteins , Base Sequence , Basic Helix-Loop-Helix Transcription Factors , DNA Primers , Humans , Oxygen/metabolism , Protein Binding , Repressor Proteins , Transcription Factors/metabolism , Tumor Cells, Cultured , Von Hippel-Lindau Tumor Suppressor Protein
SELECTION OF CITATIONS
SEARCH DETAIL