Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Neurooncol Pract ; 11(4): 494-506, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39006527

ABSTRACT

Background: Burnout is a syndrome characterized by emotional exhaustion, depersonalization, and a reduced sense of accomplishment, which commonly arises from chronic workplace stress in the medical field. Given the higher risk of burnout in younger age groups reported in some studies, the Society for Neuro-Oncology (SNO) Young Investigator (YI) and Wellness Committees combined efforts to examine burnout in the SNO YI membership to better understand and address their needs. Methods: We distributed an anonymous online survey to SNO members in 2019. Only those meeting the definition of a YI were asked to complete the survey. The survey consisted of questions about personal and professional characteristics as well as the validated Maslach Burnout Inventory-Human Services Survey (MBI-HSS) questionnaire. Statistical analyses included descriptive statistics, univariate and multivariate analyses, and incorporation of previously defined burnout profiles. Results: Data were analyzed for 173 participants who self-identified as YI. Measures of burnout showed that YI members scored higher on emotional exhaustion and depersonalization compared to normative population but similar to those in a prior SNO general membership survey. With respect to burnout profiles, 30% of YI respondents classified as overextended and 15% as burnout. Organizational challenges were the most common contributors to stress. Conclusions: Similar to results from a previous survey completed by general SNO membership, the prevalence of burnout among neuro-oncology clinical and research YI is high, and is mainly characterized by overextension, warranting interventions at institutional and organizational levels.

2.
Neuro Oncol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902944

ABSTRACT

Leptomeningeal metastases are increasingly becoming recognized as a treatable, yet generally incurable, complication of advanced cancer. As modern cancer therapeutics have prolonged the lives of patients with metastatic cancer, specifically in patients with parenchymal brain metastases, treatment options and clinical research protocols for patients with leptomeningeal metastases from solid tumors have similarly evolved to improve survival within specific populations. Recent expansion in clinical investigation, early diagnosis, and drug development have given rise to new unanswered questions. These include leptomeningeal metastasis biology and preferred animal modeling, epidemiology in the modern cancer population, ensuring validation and accessibility of newer leptomeningeal metastasis diagnostics, best clinical practices with multi-modality treatment options, clinical trial design and standardization of response assessments, and avenues worthy of further research. An international group of multi-disciplinary experts in the research and management of leptomeningeal metastases, supported by the Society for Neuro-Oncology and American Society of Clinical Oncology, were assembled to reach a consensus opinion on these pressing topics and provide a roadmap for future directions. Our hope is that these recommendations will accelerate collaboration and progress in the field of leptomeningeal metastases and serve as a platform for further discussion and patient advocacy.

3.
J Neurooncol ; 167(2): 349-359, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38427131

ABSTRACT

PURPOSE: Multidisciplinary tumor boards (MTBs) integrate clinical, molecular, and radiological information and facilitate coordination of neuro-oncology care. During the COVID-19 pandemic, our MTB transitioned to a virtual and multi-institutional format. We hypothesized that this expansion would allow expert review of challenging neuro-oncology cases and contribute to the care of patients with limited access to specialized centers. METHODS: We retrospectively reviewed records from virtual MTBs held between 04/2020-03/2021. Data collected included measures of potential clinical impact, including referrals to observational or therapeutic studies, referrals for specialized neuropathology analysis, and whether molecular findings led to a change in diagnosis and/or guided management suggestions. RESULTS: During 25 meetings, 32 presenters discussed 44 cases. Approximately half (n = 20; 48%) involved a rare central nervous system (CNS) tumor. In 21% (n = 9) the diagnosis was changed or refined based on molecular profiling obtained at the NIH and in 36% (n = 15) molecular findings guided management. Clinical trial suggestions were offered to 31% (n = 13), enrollment in the observational NCI Natural History Study to 21% (n = 9), neuropathology review and molecular testing at the NIH to 17% (n = 7), and all received management suggestions. CONCLUSION: Virtual multi-institutional MTBs enable remote expert review of CNS tumors. We propose them as a strategy to facilitate expert opinions from specialized centers, especially for rare CNS tumors, helping mitigate geographic barriers to patient care and serving as a pre-screening tool for studies. Advanced molecular testing is key to obtaining a precise diagnosis, discovering potentially actionable targets, and guiding management.


Subject(s)
Central Nervous System Neoplasms , Pandemics , Humans , Retrospective Studies , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/therapy , Patient Care Team , Referral and Consultation
5.
Clin Cancer Res ; 30(7): 1327-1337, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38252427

ABSTRACT

PURPOSE: Adverse clinical events cause significant morbidity in patients with GBM (GBM). We examined whether genomic alterations were associated with AE (AE) in patients with GBM. EXPERIMENTAL DESIGN: We identified adults with histologically confirmed IDH-wild-type GBM with targeted next-generation sequencing (OncoPanel) at Dana Farber Cancer Institute from 2013 to 2019. Seizure at presentation, lymphopenia, thromboembolic events, pseudoprogression, and early progression (within 6 months of diagnosis) were identified as AE. The biologic function of genetic variants was categorized as loss-of-function (LoF), no change in function, or gain-of-function (GoF) using a somatic tumor mutation knowledge base (OncoKB) and consensus protein function predictions. Associations between functional genomic alterations and AE were examined using univariate logistic regressions and multivariable regressions adjusted for additional clinical predictors. RESULTS: Our study included 470 patients diagnosed with GBM who met the study criteria. We focused on 105 genes that had sequencing data available for ≥ 90% of the patients and were altered in ≥10% of the cohort. Following false-discovery rate (FDR) correction and multivariable adjustment, the TP53, RB1, IGF1R, and DIS3 LoF alterations were associated with lower odds of seizures, while EGFR, SMARCA4, GNA11, BRD4, and TCF3 GoF and SETD2 LoF alterations were associated with higher odds of seizures. For all other AE of interest, no significant associations were found with genomic alterations following FDR correction. CONCLUSIONS: Genomic biomarkers based on functional variant analysis of a routine clinical panel may help identify AE in GBM, particularly seizures. Identifying these risk factors could improve the management of patients through better supportive care and consideration of prophylactic therapies.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Nuclear Proteins/genetics , Transcription Factors/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Genomics , Seizures/genetics , Mutation , DNA Helicases/genetics , Bromodomain Containing Proteins , Cell Cycle Proteins/genetics
6.
Neuro Oncol ; 26(4): 596-608, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38071654

ABSTRACT

Despite major strides in cancer research and therapy, these advances have not been equitable across race and ethnicity. Historically marginalized groups (HMG) are more likely to have inadequate preventive screening, increased delays in diagnosis, and poor representation in clinical trials. Notably, Black, Hispanic, and Indigenous people represent 30% of the population but only 9% of oncology clinical trial participants. As a result, HMGs lack equitable access to novel therapies, contradicting the principle of distributive justice, as enshrined in the Belmont report, which demands the equitable selection of subjects in research involving human subjects. The lack of clinical trial diversity also leads to low generalizability and potentially harmful medical practices. Specifically, patients with brain cancer face unique barriers to clinical trial enrollment and completion due to disease-specific neurologic and treatment-induced conditions. Collectively, the intersection of these disease-specific conditions with social determinants of health fosters a lack of diversity in clinical trials. To ameliorate this disparity in neuro-oncology clinical trial participation, we present interventions focused on improving engagement of HMGs. Proposals range from inclusive trial design, decreasing barriers to care, expanding trial eligibility, access to tumor profiling for personalized medical trials, setting reasonable metrics and goals for accrual, working with patient community stakeholders, diversifying the neuro-oncology workforce, and development of tools to overcome biases with options to incentivize equity. The diversification of participation amongst neuro-oncology clinical trials is imperative. Equitable access and inclusion of HMG patients with brain tumors will not only enhance research discoveries but will also improve patient care.


Subject(s)
Brain Neoplasms , Humans , Brain Neoplasms/therapy , Medical Oncology , Ethnicity
7.
Clin Transl Radiat Oncol ; 44: 100697, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38046107

ABSTRACT

Introduction and background: While recurrent glioblastoma patients are often treated with re-irradiation, there is limited data on the use of re-irradiation in the setting of bevacizumab (BEV), temozolomide (TMZ) re-challenge, or immune checkpoint inhibition (ICI). We describe target delineation in patients with prior anti-angiogenic therapy, assess safety and efficacy of re-irradiation, and evaluate patterns of recurrence. Materials and methods: Patients with a histologically confirmed diagnosis of glioblastoma treated at a single institution between 2013 and 2021 with re-irradiation were included. Tumor, treatment and clinical data were collected. Logistic and Cox regression analysis were used for statistical analysis. Results: One hundred and seventeen recurrent glioblastoma patients were identified, receiving 129 courses of re-irradiation. In 66 % (85/129) of cases, patients had prior BEV. In the 80 patients (62 %) with available re-irradiation plans, 20 (25 %) had all T2/FLAIR abnormality included in the gross tumor volume (GTV). Median overall survival (OS) for the cohort was 7.3 months, and median progression-free survival (PFS) was 3.6 months. Acute CTCAE grade ≥ 3 toxicity occurred in 8 % of cases. Concurrent use of TMZ or ICI was not associated with improved OS nor PFS. On multivariable analysis, higher KPS was significantly associated with longer OS (p < 0.01). On subgroup analysis, patients with prior BEV had significantly more marginal recurrences than those without (26 % vs. 13 %, p < 0.01). Conclusion: Re-irradiation can be safely employed in recurrent glioblastoma patients. Marginal recurrence was more frequent in patients with prior BEV, suggesting a need to consider more inclusive treatment volumes incorporating T2/FLAIR abnormality.

8.
Neuro Oncol ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38070147

ABSTRACT

BACKGROUND: We recently conducted a phase 2 trial (NCT028865685) evaluating intracranial efficacy of pembrolizumab for brain metastases (BM) of diverse histologies. Our study met its primary efficacy endpoint and illustrates that pembrolizumab exerts promising activity in a select group of patients with BM. Given the importance of aberrant vasculature in mediating immunosuppression, we explored the relationship between checkpoint inhibitor (ICI) efficacy and vascular architecture in the hopes of identifying potential mechanisms of intracranial ICI response or resistance for BM. METHODS: Using Vessel Architectural Imaging (VAI), a histologically validated quantitative metric for in vivo tumor vascular physiology, we analyzed dual echo DSC/DCE MRI for 44 patients on trial. Tumor and peri-tumor cerebral blood volume/flow, vessel size, arterial- and venous-dominance, and vascular permeability were measured before and after treatment with pembrolizumab. RESULTS: BM that progressed on ICI were characterized by a highly aberrant vasculature dominated by large-caliber vessels. In contrast, ICI-responsive BM possessed a more structurally balanced vasculature consisting of both small and large vessels, and there was a trend towards a decrease in under-perfused tissue, suggesting a reversal of the negative effects of hypoxia. In the peri-tumor region, development of smaller blood vessels, consistent with neo-angiogenesis, was associated with tumor growth before radiographic evidence of contrast enhancement on anatomical MRI. CONCLUSIONS: This study, one of the largest functional imaging studies for BM, suggests that vascular architecture is linked with ICI efficacy. Studies identifying modulators of vascular architecture, and effects on immune activity, are warranted and may inform future combination treatments.

9.
Curr Neurol Neurosci Rep ; 23(12): 827-839, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37938472

ABSTRACT

PURPOSE OF REVIEW: To outline the spectrum of neurotoxicity seen with approved immunotherapies and in pivotal clinical trials including immune checkpoint inhibitors, chimeric antigen receptor T-cell therapy, vaccine therapy, and oncolytic viruses. RECENT FINDINGS: There has been an exponential growth in new immunotherapies, which has transformed the landscape of oncology treatment. With more widespread use of cancer immunotherapies, there have also been advances in characterization of its associated neurotoxicity, research into potential underlying mechanisms, and development of management guidelines. Increasingly, there is also mounting interest in long-term neurologic sequelae. Neurologic complications of immunotherapy can impact every aspect of the central and peripheral nervous system. Early recognition and treatment are critical. Expanding indications for immunotherapy to solid and CNS tumors has led to new challenges, such as how to reliably distinguish neurotoxicity from disease progression. Our evolving understanding of immunotherapy neurotoxicity highlights important areas for future research and the need for novel immunomodulatory therapeutics.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy/adverse effects , Immunotherapy/methods , Neoplasms/therapy
10.
Nature ; 623(7985): 157-166, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853118

ABSTRACT

Immunotherapy failures can result from the highly suppressive tumour microenvironment that characterizes aggressive forms of cancer such as recurrent glioblastoma (rGBM)1,2. Here we report the results of a first-in-human phase I trial in 41 patients with rGBM who were injected with CAN-3110-an oncolytic herpes virus (oHSV)3. In contrast to other clinical oHSVs, CAN-3110 retains the viral neurovirulence ICP34.5 gene transcribed by a nestin promoter; nestin is overexpressed in GBM and other invasive tumours, but not in the adult brain or healthy differentiated tissue4. These modifications confer CAN-3110 with preferential tumour replication. No dose-limiting toxicities were encountered. Positive HSV1 serology was significantly associated with both improved survival and clearance of CAN-3110 from injected tumours. Survival after treatment, particularly in individuals seropositive for HSV1, was significantly associated with (1) changes in tumour/PBMC T cell counts and clonal diversity, (2) peripheral expansion/contraction of specific T cell clonotypes; and (3) tumour transcriptomic signatures of immune activation. These results provide human validation that intralesional oHSV treatment enhances anticancer immune responses even in immunosuppressive tumour microenvironments, particularly in individuals with cognate serology to the injected virus. This provides a biological rationale for use of this oncolytic modality in cancers that are otherwise unresponsive to immunotherapy (ClinicalTrials.gov: NCT03152318 ).


Subject(s)
Brain Neoplasms , Glioblastoma , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Glioblastoma/immunology , Glioblastoma/pathology , Nestin/genetics , Oncolytic Virotherapy/adverse effects , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Oncolytic Viruses/physiology , Reproducibility of Results , Survival Analysis , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Treatment Outcome , Tumor Microenvironment/immunology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology
11.
bioRxiv ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37693537

ABSTRACT

Structurally and functionally aberrant vasculature is a hallmark of tumor angiogenesis and treatment resistance. Given the synergistic link between aberrant tumor vasculature and immunosuppression, we analyzed perfusion MRI for 44 patients with brain metastases (BM) undergoing treatment with pembrolizumab. To date, vascular-immune communication, or the relationship between immune checkpoint inhibitor (ICI) efficacy and vascular architecture, has not been well-characterized in human imaging studies. We found that ICI-responsive BM possessed a structurally balanced vascular makeup, which was linked to improved vascular efficiency and an immune-stimulatory microenvironment. In contrast, ICI-resistant BM were characterized by a lack of immune cell infiltration and a highly aberrant vasculature dominated by large-caliber vessels. Peri-tumor region analysis revealed early functional changes predictive of ICI resistance before radiographic evidence on conventional MRI. This study was one of the largest functional imaging studies for BM and establishes a foundation for functional studies that illuminate the mechanisms linking patterns of vascular architecture with immunosuppression, as targeting these aspects of cancer biology may serve as the basis for future combination treatments.

12.
J Clin Oncol ; 41(36): 5524-5535, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37722087

ABSTRACT

PURPOSE: The Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT) is a phase II platform trial that uses response adaptive randomization and genomic profiling to efficiently identify novel therapies for phase III testing. Three initial experimental arms (abemaciclib [a cyclin-dependent kinase [CDK]4/6 inhibitor], neratinib [an epidermal growth factor receptor [EGFR]/human epidermal growth factor receptor 2 inhibitor], and CC-115 [a deoxyribonucleic acid-dependent protein kinase/mammalian target of rapamycin inhibitor]) were simultaneously evaluated against a common control arm. We report the results for each arm and examine the feasibility and conduct of the adaptive platform design. PATIENTS AND METHODS: Patients with newly diagnosed O6-methylguanine-DNA methyltransferase-unmethylated glioblastoma were eligible if they had tumor genotyping to identify prespecified biomarker subpopulations of dominant glioblastoma signaling pathways (EGFR, phosphatidylinositol 3-kinase, and CDK). Initial random assignment was 1:1:1:1 between control (radiation therapy and temozolomide) and the experimental arms. Subsequent Bayesian adaptive randomization was incorporated on the basis of biomarker-specific progression-free survival (PFS) data. The primary end point was overall survival (OS), and one-sided P values are reported. The trial is registered with ClinicalTrials.gov (identifier: NCT02977780). RESULTS: Two hundred thirty-seven patients were treated (71 control; 73 abemaciclib; 81 neratinib; 12 CC-115) in years 2017-2021. Abemaciclib and neratinib were well tolerated, but CC-115 was associated with ≥ grade 3 treatment-related toxicity in 58% of patients. PFS was significantly longer with abemaciclib (hazard ratio [HR], 0.72; 95% CI, 0.49 to 1.06; one-sided P = .046) and neratinib (HR, 0.72; 95% CI, 0.50 to 1.02; one-sided P = .033) relative to the control arm but there was no PFS benefit with CC-115 (one-sided P = .523). None of the experimental therapies demonstrated a significant OS benefit (P > .05). CONCLUSION: The INSIGhT design enabled efficient simultaneous testing of three experimental agents using a shared control arm and adaptive randomization. Two investigational arms had superior PFS compared with the control arm, but none demonstrated an OS benefit. The INSIGhT design may promote improved and more efficient therapeutic discovery in glioblastoma. New arms have been added to the trial.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Random Allocation , Bayes Theorem , Brain Neoplasms/therapy , ErbB Receptors/genetics , Biomarkers
13.
Neurooncol Adv ; 5(1): vdad083, 2023.
Article in English | MEDLINE | ID: mdl-37554224

ABSTRACT

Background: Glioblastoma (GBM) patients are treated with radiation therapy, chemotherapy, and corticosteroids, which can cause myelosuppression. To understand the relative prognostic utility of blood-based biomarkers in GBM and its implications for clinical trial design, we examined the incidence, predictors, and prognostic value of lymphopenia, neutrophil-to-lymphocyte ratio (NLR), and platelet count during chemoradiation (CRT) and recurrence. Methods: This cohort study included 764 newly diagnosed glioblastoma patients treated from 2005 to 2019 with blood counts prior to surgery, within 6 weeks of CRT, and at first recurrence available for automatic extraction from the medical record. Logistic regression was used to evaluate exposures and Kaplan-Meier was used to evaluate outcomes. Results: Among the cohort, median age was 60.3 years; 87% had Karnofsky performance status ≥ 70, 37.5% had gross total resection, and 90% received temozolomide (TMZ). During CRT, 37.8% (248/656) of patients developed grade 3 or higher lymphopenia. On multivariable analysis (MVA), high NLR during CRT remained an independent predictor for inferior survival (Adjusted Hazard Ratio [AHR] = 1.57, 95% CI = 1.14-2.15) and shorter progression-free survival (AHR = 1.42, 95% CI = 1.05-1.90). Steroid use was associated with lymphopenia (OR = 2.66,1.20-6.00) and high NLR (OR = 3.54,2.08-6.11). Female sex was associated with lymphopenia (OR = 2.33,1.03-5.33). At first recurrence, 28% of patients exhibited grade 3 or higher lymphopenia. High NLR at recurrence was associated with worse subsequent survival on MVA (AHR = 1.69, 95% CI = 1.25-2.27). Conclusions: High NLR is associated with worse outcomes in newly diagnosed and recurrent glioblastoma. Appropriate eligibility criteria and accounting and reporting of blood-based biomarkers are important in the design and interpretation of newly diagnosed and recurrent glioblastoma trials.

14.
Lancet Oncol ; 24(8): e344-e354, 2023 08.
Article in English | MEDLINE | ID: mdl-37541280

ABSTRACT

Brain metastases are an increasing global public health concern, even as survival rates improve for patients with metastatic disease. Both metastases and the sequelae of their treatment are key determinants of the inter-related priorities of patient survival, function, and quality of life, mandating a multidimensional approach to clinical care and research. At a virtual National Cancer Institute Workshop in September, 2022, key stakeholders convened to define research priorities to address the crucial areas of unmet need for patients with brain metastases to achieve meaningful advances in patient outcomes. This Policy Review outlines existing knowledge gaps, collaborative opportunities, and specific recommendations regarding consensus priorities and future directions in brain metastases research. Achieving major advances in research will require enhanced coordination between the ongoing efforts of individual organisations and consortia. Importantly, the continual and active engagement of patients and patient advocates will be necessary to ensure that the directionality of all efforts reflects what is most meaningful in the context of patient care.


Subject(s)
Biomedical Research , Brain Neoplasms , United States , Humans , Quality of Life , National Cancer Institute (U.S.) , Consensus , Brain Neoplasms/therapy
15.
Nat Med ; 29(7): 1728-1737, 2023 07.
Article in English | MEDLINE | ID: mdl-37268724

ABSTRACT

Brain metastases (BMs) are an emerging challenge in oncology due to increasing incidence and limited treatments. Here, we present results of a single-arm, open-label, phase 2 trial evaluating intracranial efficacy of pembrolizumab, a programmed cell death protein 1 inhibitor, in 9 patients with untreated BMs (cohort A) and 48 patients with recurrent and progressive BMs (cohort B) across different histologies. The primary endpoint was the proportion of patients achieving intracranial benefit, defined by complete response, partial response or stable disease. The primary endpoint was met with an intracranial benefit rate of 42.1% (90% confidence interval (CI): 31-54%). The median overall survival, a secondary endpoint, was 8.0 months (90% CI: 5.5-8.7 months) across both cohorts, 6.5 months (90% CI: 4.5-18.7 months) for cohort A and 8.1 months (90% CI: 5.3-9.6 months) for cohort B. Seven patients (12.3%), encompassing breast, melanoma and sarcoma histologies, had overall survival greater than 2 years. Thirty patients (52%; 90% CI: 41-64%) had one or more grade-3 or higher adverse events that were at least possibly treatment related. Two patients had grade-4 adverse events (cerebral edema) that were deemed at least possibly treatment related. These results suggest that programmed cell death protein 1 blockade may benefit a select group of patients with BMs, and support further studies to identify biomarkers and mechanisms of resistance. ClinicalTrials.gov identifier: NCT02886585.


Subject(s)
Brain Neoplasms , Melanoma , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Melanoma/pathology
16.
Clin Cancer Res ; 29(16): 3017-3025, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37327319

ABSTRACT

PURPOSE: We evaluated the efficacy of bavituximab-a mAb with anti-angiogenic and immunomodulatory properties-in newly diagnosed patients with glioblastoma (GBM) who also received radiotherapy and temozolomide. Perfusion MRI and myeloid-related gene transcription and inflammatory infiltrates in pre-and post-treatment tumor specimens were studied to evaluate on-target effects (NCT03139916). PATIENTS AND METHODS: Thirty-three adults with IDH--wild-type GBM received 6 weeks of concurrent chemoradiotherapy, followed by 6 cycles of temozolomide (C1-C6). Bavituximab was given weekly, starting week 1 of chemoradiotherapy, for at least 18 weeks. The primary endpoint was proportion of patients alive at 12 months (OS-12). The null hypothesis would be rejected if OS-12 was ≥72%. Relative cerebral blood flow (rCBF) and vascular permeability (Ktrans) were calculated from perfusion MRIs. Peripheral blood mononuclear cells and tumor tissue were analyzed pre-treatment and at disease progression using RNA transcriptomics and multispectral immunofluorescence for myeloid-derived suppressor cells (MDSC) and macrophages. RESULTS: The study met its primary endpoint with an OS-12 of 73% (95% confidence interval, 59%-90%). Decreased pre-C1 rCBF (HR, 4.63; P = 0.029) and increased pre-C1 Ktrans were associated with improved overall survival (HR, 0.09; P = 0.005). Pre-treatment overexpression of myeloid-related genes in tumor tissue was associated with longer survival. Post-treatment tumor specimens contained fewer immunosuppressive MDSCs (P = 0.01). CONCLUSIONS: Bavituximab has activity in newly diagnosed GBM and resulted in on-target depletion of intratumoral immunosuppressive MDSCs. Elevated pre-treatment expression of myeloid-related transcripts in GBM may predict response to bavituximab.

17.
J Clin Oncol ; 41(17): 3160-3171, 2023 06 10.
Article in English | MEDLINE | ID: mdl-37027809

ABSTRACT

PURPOSE: The Response Assessment in Neuro-Oncology (RANO) criteria are widely used in high-grade glioma clinical trials. We compared the RANO criteria with updated modifications (modified RANO [mRANO] and immunotherapy RANO [iRANO] criteria) in patients with newly diagnosed glioblastoma (nGBM) and recurrent GBM (rGBM) to evaluate the performance of each set of criteria and inform the development of the planned RANO 2.0 update. MATERIALS AND METHODS: Evaluation of tumor measurements and fluid-attenuated inversion recovery (FLAIR) sequences were performed by blinded readers to determine disease progression using RANO, mRANO, iRANO, and other response assessment criteria. Spearman's correlations between progression-free survival (PFS) and overall survival (OS) were calculated. RESULTS: Five hundred twenty-six nGBM and 580 rGBM cases were included. Spearman's correlations were similar between RANO and mRANO (0.69 [95% CI, 0.62 to 0.75] v 0.67 [95% CI, 0.60 to 0.73]) in nGBM and rGBM (0.48 [95% CI, 0.40 to 0.55] v 0.50 [95% CI, 0.42 to 0.57]). In nGBM, requirement of a confirmation scan within 12 weeks of completion of radiotherapy to determine progression was associated with improved correlations. Use of the postradiation magnetic resonance imaging (MRI) as baseline scan was associated with improved correlation compared with use of the pre-radiation MRI (0.67 [95% CI, 0.60 to 0.73] v 0.53 [95% CI, 0.42 to 0.62]). Evaluation of FLAIR sequences did not improve the correlation. Among patients who received immunotherapy, Spearman's correlations were similar among RANO, mRANO, and iRANO. CONCLUSION: RANO and mRANO demonstrated similar correlations between PFS and OS. Confirmation scans were only beneficial in nGBM within 12 weeks of completion of radiotherapy, and there was a trend in favor of the use of postradiation MRI as the baseline scan in nGBM. Evaluation of FLAIR can be omitted. The iRANO criteria did not add significant benefit in patients who received immune checkpoint inhibitors.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/therapy , Glioblastoma/drug therapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Glioma/drug therapy , Magnetic Resonance Imaging/methods , Immunotherapy
18.
Neuro Oncol ; 25(3): 557-565, 2023 03 14.
Article in English | MEDLINE | ID: mdl-35948282

ABSTRACT

BACKGROUND: Patients with human epidermal growth factor receptor 2-positive (HER2-positive) cancers have a high incidence of central nervous system (CNS) spread, but unfortunately systemic trastuzumab which targets the HER2 receptor has little CNS penetration. The purpose of this study was to determine the maximum-tolerated dose of intrathecal trastuzumab and its efficacy in patients with HER2-positive leptomeningeal disease (LMD). METHODS: This multicenter study enrolled 34 LMD patients in a combined phase I/II study in treating patients with intrathecal trastuzumab. Any HER2-positive histology was allowed in the phase I; the phase II was limited to HER2-positive breast cancer. RESULTS: Intrathecal trastuzumab was well-tolerated, with one dose limiting toxicity of grade 4 (arachnoiditis) occurring at the 80 mg twice weekly dose. The recommended phase II dose was 80 mg intrathecally twice weekly. Twenty-six patients at dose level 80 mg were included in evaluation for efficacy: partial response was seen in 5 (19.2%) patients, stable disease was observed in 13 (50.0%), and 8 (30.8%) of the patients had progressive disease. Median overall survival (OS) for phase II dose treated patients was 8.3 months (95% CI 5.2-19.6). The phase II HER2-positive breast cancer patients median OS was 10.5 months (95% CI 5.2-20.9). Pharmacokinetic (PK) studies were limited in the setting of concurrent systemic trastuzumab administration, however, did show stable cerebrospinal fluid (CSF) concentrations with repeated dosing suggest that trastuzumab does not accumulate in the CSF in toxic concentrations. CONCLUSION: This study suggests promise for potentially improved outcomes of HER-positive LMD patients when treated with intrathecal trastuzumab while remaining safe and well-tolerated for patients.


Subject(s)
Breast Neoplasms , Meningeal Carcinomatosis , Humans , Female , Trastuzumab/adverse effects , Receptor, ErbB-2/metabolism , Breast Neoplasms/pathology , Meningeal Carcinomatosis/drug therapy , Meningeal Carcinomatosis/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects
19.
Neuro Oncol ; 25(6): 1100-1112, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36402744

ABSTRACT

BACKGROUND: Glioblastomas comprise heterogeneous cell populations with dynamic, bidirectional plasticity between treatment-resistant stem-like and treatment-sensitive differentiated states, with treatment influencing this process. However, current treatment protocols do not account for this plasticity. Previously, we generated a mathematical model based on preclinical experiments to describe this process and optimize a radiation therapy fractionation schedule that substantially increased survival relative to standard fractionation in a murine glioblastoma model. METHODS: We developed statistical models to predict the survival benefit of interventions to glioblastoma patients based on the corresponding survival benefit in the mouse model used in our preclinical study. We applied our mathematical model of glioblastoma radiation response to optimize a radiation therapy fractionation schedule for patients undergoing re-irradiation for glioblastoma and developed a first-in-human trial (NCT03557372) to assess the feasibility and safety of administering our schedule. RESULTS: Our statistical modeling predicted that the hazard ratio when comparing our novel radiation schedule with a standard schedule would be 0.74. Our mathematical modeling suggested that a practical, near-optimal schedule for re-irradiation of recurrent glioblastoma patients was 3.96 Gy × 7 (1 fraction/day) followed by 1.0 Gy × 9 (3 fractions/day). Our optimized schedule was successfully administered to 14/14 (100%) patients. CONCLUSIONS: A novel radiation therapy schedule based on mathematical modeling of cell-state plasticity is feasible and safe to administer to glioblastoma patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Glioblastoma/drug therapy , Brain Neoplasms/drug therapy , Proportional Hazards Models , Dose Fractionation, Radiation , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...