Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 337: 117737, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36933538

ABSTRACT

Eutrophication management is one of the greatest environmental challenges for lacustrine systems worldwide. The empirically predicted models between algal chlorophyll (CHL-a) and total phosphorus (TP) provide a basis for managing eutrophication in lakes and reservoirs, but other environmental factors influencing the empirical relations must be considered. Here, we tested the impacts of morphological and chemical variables, as well as the effect of the Asian monsoon, on the functional response of CHL-a to TP using two-year data of 293 agricultural reservoirs. This study was based on the approaches of empirical models (linear and sigmoidal), CHL-a:TP ratio, and trophic state index deviation (TSID). Algal CHL-a exhibited a strong log-linear relation with TP on the basis of 2-year average data (R2 = 0.69, p < 0.001), whereas it had a more sigmoidal relation in terms of monsoon-seasonal averages (R2 = 0.52, p < 0.001). The linear segment of the CHL-a-TP relation aligned with the gradient of TP (10 mg/L < TP < 100 mg/L) from mesotrophic to eutrophic conditions. The transfer efficiency of TP to CHL-a based on the 2-year mean CHL-a:TP was high (0.6 <) across all assessed agricultural systems. CHL-a:TP showed insignificant correlations with reservoir morphological variations, but it decreased (<0.5) in eutrophic and hypereutrophic systems during the monsoon season (July-August). Because TP and total suspended solids (TSS) have become increasingly abundant, light conditions become insufficient for algal growth during and after the monsoon season. Light-limited conditions become more prevalent in hypereutrophic systems with shallow depth and high dynamic sediment ratio (DSR) because of the intense rainfall inputs and wind-induced sediment resuspension of the post-monsoon season. TSID reflected the degree of phosphorus limitation and the reduction in underwater light corresponding to changes in reservoir water chemistry (ionic content, TSS, and TN:TP ratio), trophic state gradient, and morphological metrics (mainly mean depth and DSR). Our findings suggest that monsoon-induced changes in water chemistry and light attenuation, which are also associated with anthropogenic pollutant runoffs and reservoir morphology, are critical factors that influence the functional response of algal CHL-a to TP in temperate reservoirs. Modeling and assessing eutrophication should therefore take into account monsoon seasonality along with individual morphological features further.


Subject(s)
Chlorophyll , Environmental Monitoring , Chlorophyll/analysis , Water Supply , Lakes , Water , Eutrophication , Phosphorus/analysis , China , Nitrogen/analysis
2.
Anim Cells Syst (Seoul) ; 21(2): 133-140, 2017.
Article in English | MEDLINE | ID: mdl-30460061

ABSTRACT

Rotifer community is often used as a taxon-based bioindicator for water quality. However, studies of the planktonic community from the viewpoint of functional groups in freshwater ecosystems have been limited, particularly for rotifers. Because rotifers have various trophi types determining their feeding strategies, thereby representing an ecological niche, their functional feeding groups can act as biological and ecological indicators in lakes and reservoirs where planktonic communities are dominant. We analyzed the patterns of spatial distribution of the rotifer community in various reservoirs and then its relationship with water quality through redundancy and regression analyses. Compared with taxon-based composition, the response of trophi-based composition appears simplistic and showed clearer tendency in relation with water-quality variables. Each trophi responded differently by the degree of eutrophication indicating that each trophi group is possibly affected by environments such as the combinations of water-quality variables in different ways.

SELECTION OF CITATIONS
SEARCH DETAIL
...