Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38610385

ABSTRACT

Vehicular clouds represent an appealing approach, leveraging vehicles' resources to generate value-added services. Thus, efficiently searching for and allocating resources is a challenge for the successful construction of vehicular clouds. Many recent schemes have relied on hierarchical network architectures using clusters to address this challenge. These clusters are typically constructed based on vehicle proximity, such as being on the same road or within the same region. However, this approach struggles to rapidly search for and consistently allocate resources, especially considering the diverse resource types and varying mobility of vehicles. To address these limitations, we propose the Resource Cluster-based Resource Search and Allocation (RCSA) scheme. RCSA constructs resource clusters based on resource types rather than vehicle proximity. This allows for more efficient resource searching and allocation. Within these resource clusters, RCSA supports both intra-resource cluster search for the same resource type and inter-resource cluster search for different resource types. In RCSA, vehicles with longer connection times and larger resource capacities are allocated in vehicular clouds to minimize cloud breakdowns and communication traffic. To handle the reconstruction of resource clusters due to vehicle mobility, RCSA implements mechanisms for replacing Resource Cluster Heads (RCHs) and managing Resource Cluster Members (RCMs). Simulation results validate the effectiveness of RCSA, demonstrating its superiority over existing schemes in terms of resource utilization, allocation efficiency, and overall performance.

2.
Sensors (Basel) ; 23(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37447654

ABSTRACT

In vehicular networks, vehicles download vehicular information for various applications, including safety, convenience, entertainment, and social interaction, from the corresponding content servers via stationary roadside units. Since sufficient RSUs might be difficult to deploy due to rough geographical conditions or high deployment costs, vehicular networks can feature uncovered outage zones between two neighboring RSUs. In these outage zones, vehicles cannot download content, and thus the vehicle networks are defined as intermittently connected vehicular networks. In intermittently connected vehicular networks, the download delay and traffic overhead on the backhaul links are increased due to the large size of the content requested by vehicle users and the long distances between RSUs. Using the mobility information of vehicles, several schemes have been proposed to solve this issue by precaching and relaying content via multiple relaying vehicles in the outage zone. However, because they involved the individual ranking of vehicles for precaching and allocated all of the available precaching amounts to the top-ranking vehicles, they decreased the success rate of content requests and the fairness of vehicle precaching. To overcome the problem of these previous schemes, this paper proposes a multiple precaching vehicle selection (MPVS) scheme that efficiently selects a content-precaching vehicle group with multiple precaching vehicles to precache relayed content in outage zones. To achieve this, we first designed numerical models to decide the necessity and the amount of precaching and to calculate the available precaching amounts of vehicles. Next, MPVS calculates all available vehicle sets and ranks each set based on the available precaching amount. Then, the content-precaching vehicle group is identified from the sets by considering both set rankings and vehicle communication overheads. MPVS also provides a content downloading process through the content-precaching vehicle group in the outage zone. Simulation results conducted in various environments with a content request model and a highway mobility model verified that MPVS was superior to a representative previous scheme.


Subject(s)
Communication , Social Interaction , Computer Simulation , Geography
3.
Sensors (Basel) ; 23(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37112215

ABSTRACT

Long range (LoRa) is a low-power wide-area technology because it is eminent for robust long-distance, low-bitrate, and low-power communications in the unlicensed sub-GHz spectrum used for the Internet of things (IoT) networks. Recently, several multi-hop LoRa networks have proposed schemes with explicit relay nodes to partially mitigate the path loss and longer transmission time bottlenecks of the conventional single-hop LoRa by focusing more on coverage expansion. However, they do not consider improving the packet delivery success ratio (PDSR) and the packet reduction ratio (PRR) by using the overhearing technique. Thus, this paper proposes an implicit overhearing node-based multi-hop communication (IOMC) scheme in IoT LoRa networks, which exploits implicit relay nodes for performing the overhearing to promote relay operation while satisfying the duty cycle regulation. In IOMC, implicit relay nodes are selected as overhearing nodes (OHs) among end devices with a low spreading factor (SF) in order to improve PDSR and PRR for distant end devices (EDs). A theoretical framework for designing and determining the OH nodes to execute the relay operations was developed with consideration of the LoRaWAN MAC protocol. Simulation results verify that IOMC significantly increases the probability of successful transmission, performs best in high node density, and is more resilient to poor RSSI than the existing schemes.

4.
Sensors (Basel) ; 22(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36502034

ABSTRACT

Long range (LoRa) is one of the most successful low-power wide-area networking technologies because it is ideally suited for long-distance, low-bit rate, and low-power communications in the unlicensed sub-GHz spectrum utilized for Internet of things (IoT) networks. The effectiveness of LoRa depends on the link budget (i.e., spreading factor (SF), bandwidth (BW), and transmission power (TX)). Due to the near-far effect, the allocation of a link budget to LoRa devices (LDs) in large coverage regions is unfair between them depending on their distance to the GW. Thus, more transmission opportunities are given to some LDs to the detriment of other LD's opportunities. Numerous studies have been conducted to address the prevalent near-far fairness problem. Due to the absence of a tractable analytical model for fairness in the LoRa network, however, it is still difficult to solve this problem completely. Thus, we propose an SF-partition-based clustering and relaying (SFPCR) scheme to achieve enormous LD connectivity with fairness in IoT multihop LoRa networks. For the SF partition, the SFPCR scheme determines the suitable partitioning threshold point for bridging packet delivery success probability gaps between SF regions, namely, the lower SF zone (LSFZ) and the higher SF zone (HSFZ). To avoid long-distance transmissions to the GW, the HSFZ constructs a density-based subspace clustering that generates clusters of arbitrary shape for adjacent LDs and selects cluster headers by using a binary score representation. To support reliable data transmissions to the GW by multihop communications, the LSFZ offers a relay LD selection that ideally chooses the best relay LD to extend uplink transmissions from LDs in the HSFZ. Through simulations, we show that the proposed SFPCR scheme exhibits the highest success probability of 65.7%, followed by the FSRC scheme at 44.6%, the mesh scheme at 34.2%, and lastly the cluster-based scheme at 29.4%, and it conserves the energy of LDs compared with the existing schemes.


Subject(s)
Internet of Things , Cluster Analysis , Communication , Polysaccharide-Lyases
5.
Sensors (Basel) ; 22(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35591034

ABSTRACT

Content-centric vehicular networks (CCVNs) have considered distributed proactive caching as an attractive approach for the timely provision of emerging services. The naïve caching schemes cache all of the contents to only one selected roadside unit (RSU) for requested vehicles to decrease the data acquisition delay between the data source and the vehicles. Due to the high deployment cost for RSUs and their limited capacity of caching, the vehicular networks could support only a limited number of vehicles and a limited amount of content and thus decrease the cache hit ratio. This paper proposes a mobility-aware distributed proactive caching protocol (MDPC) in CCVNs. MDPC caches contents to the selected RSUs according to the movement of vehicles. To reduce the redundancy and the burden of caching for each RSU, MDPC distributes to cache partial contents by the movement pattern, the probability to predict the next locations (RSUs) on the Markov model based on the current RSU. For recovery of prediction failures, MDPC allows each RSU to request partial missing contents to relatively closer neighbor RSUs with a short delay. Next, we expand the protocol with traffic optimization called MDPC_TO to minimize the amount of traffic for achieving proactive caching in CCVNs. In proportion to the mobility probability of a vehicle toward each of the next RSUs, MDPC_TO controls the amount of pre-cached contents in each of the next RSUs. Then, MDPC_TO has constraints to provide enough content from other next RSUs through backhaul links to remove the delay due to prediction failures. Simulation results verify that MDPC_TO produces less traffic than MDPC.

6.
Sensors (Basel) ; 21(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34770671

ABSTRACT

By leveraging the development of mobile communication technologies and due to the increased capabilities of mobile devices, mobile multimedia services have gained prominence for supporting high-quality video streaming services. In vehicular ad-hoc networks (VANETs), high-quality video streaming services are focused on providing safety and infotainment applications to vehicles on the roads. Video streaming data require elastic and continuous video packet distributions to vehicles to present interactive real-time views of meaningful scenarios on the road. However, the high mobility of vehicles is one of the fundamental and important challenging issues for video streaming services in VANETs. Nevertheless, previous studies neither dealt with suitable data caching for supporting the mobility of vehicles nor provided appropriate seamless packet forwarding for ensuring the quality of service (QoS) and quality of experience (QoE) of real-time video streaming services. To address this problem, this paper proposes a video packet distribution scheme named Clone, which integrates vehicle-to-vehicle and vehicle-to-infrastructure communications to disseminate video packets for video streaming services in VANETs. First, an indicator called current network quality information (CNQI) is defined to measure the feature of data forwarding of each node to its neighbor nodes in terms of data delivery ratio and delay. Based on the CNQI value of each node and the trajectory of the destination vehicle, access points called clones are selected to cache video data packets from data sources. Subsequently, packet distribution optimization is conducted to determine the number of video packets to cache in each clone. Finally, data delivery synchronization is established to support seamless streaming data delivery from a clone to the destination vehicle. The experimental results show that the proposed scheme achieves high-quality video streaming services in terms of QoS and QoE compared with existing schemes.

7.
Sensors (Basel) ; 21(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34450817

ABSTRACT

Content-Centric Vehicular Networks (CCVNs) are considered as an attractive technology to efficiently distribute and share contents among vehicles in vehicular environments. Due to the large size of contents such as multimedia data, it might be difficult for a vehicle to download the whole of a content within the coverage of its current RoadSide Unit (RSU). To address this issue, many studies exploit mobility-based content precaching in the next RSU on the trajectory of the vehicle. To calculate the amount of the content precaching, they use a constant speed such as the current speed of the vehicle requesting the content or the average speed of vehicles in the next RSU. However, since they do not appropriately reflect the practical speed of the vehicle in the next RSU, they could incorrectly calculate the amount of the content precaching. Therefore, we propose an adaptive content precaching scheme (ACPS) that correctly estimates the predictive speed of a requester vehicle to reflect its practical speed and calculates the amount of the content precaching using its predictive speed. ACPS adjusts the predictive speed to the average speed starting from the current speed with the optimized adaptive value. To compensate for a subtle error between the predictive and the practical speeds, ACPS appropriately adds a guardband area to the precaching amount. Simulation results verify that ACPS achieves better performance than previous schemes with the current or the average speeds in terms of the content download delay and the backhaul traffic overhead.

8.
Sensors (Basel) ; 21(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924643

ABSTRACT

Face-routing is one of the reliable recovery schemes when geographic routing fails to transmit data packets. Although studies on face-routing can overcome the failure of the data transmission, they lead to much energy consumption due to frequent data transmissions between adjacent nodes for carrying out the rule of face-routing. To avoid the frequent data transmissions, several face-routing schemes have been recently proposed to transmit data packets to the farthest-neighbor node. However, they happen with many data retransmissions because the farthest-neighbor node has a relatively low transmission success ratio. To solve this problem, we propose a new face-routing scheme that determines the most appropriate neighbor node to balance the trade-off between energy efficiency and transmission reliability with two viewpoints. The first viewpoint focuses on how to increase the distance progress of the data delivery in one-hop range to enhance energy efficiency. After that, the second viewpoint focuses on how to increase the success ratio of the data delivery to enhance the transmission reliability. As a result of the simulation, it was confirmed that the proposed method achieves better performance in terms of energy efficiency than existing face-routing research, and it is better than recent face-routing research in terms of reliability and retransmission.

SELECTION OF CITATIONS
SEARCH DETAIL
...