Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 76(7): 1733-45, 2016 04 01.
Article in English | MEDLINE | ID: mdl-26921330

ABSTRACT

Kinase inhibitors are used widely to treat various cancers, but adaptive reprogramming of kinase cascades and activation of feedback loop mechanisms often contribute to therapeutic resistance. Determining comprehensive, accurate maps of kinase circuits may therefore help elucidate mechanisms of response and resistance to kinase inhibitor therapies. In this study, we identified and validated phosphorylatable target sites across human cell and tissue types to generate PhosphoAtlas, a map of 1,733 functionally interconnected proteins comprising the human phospho-reactome. A systematic curation approach was used to distill protein phosphorylation data cross-referenced from 38 public resources. We demonstrated how a catalog of 2,617 stringently verified heptameric peptide regions at the catalytic interface of kinases and substrates could expose mutations that recurrently perturb specific phospho-hubs. In silico mapping of 2,896 nonsynonymous tumor variants identified from thousands of tumor tissues also revealed that normal and aberrant catalytic interactions co-occur frequently, showing how tumors systematically hijack, as well as spare, particular subnetworks. Overall, our work provides an important new resource for interrogating the human tumor kinome to strategically identify therapeutically actionable kinase networks that drive tumorigenesis. Cancer Res; 76(7); 1733-45. ©2016 AACR.


Subject(s)
Neoplasms/genetics , Humans , Mutation , Phosphorylation , Signal Transduction
2.
Bioorg Med Chem ; 19(20): 6120-34, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21908194

ABSTRACT

In an attempt to study the optimal combination of a phenyl ring at the C(2)-position and different substituents at the N(5)- and N(8)-positions towards the selective modulation of human A(3) adenosine receptors (hA(3)AR), we synthesized a new series of 2-para-(un)substituted-phenyl-pyrazolo-triazolo-pyrimidines bearing either a methyl or phenylethyl at N(8) and chains of variable length at N(5). Through biological evaluation, it was found that the majority of the compounds had good affinities towards the hA(3)AR in the low nanomolar range. Compound 16 possessed the best hA(3)AR affinity and selectivity profile (K(i)hA(3)=1.33 nM; hA(1)/hA(3)=4880; hA(2A)/hA(3)=1100) in the present series of 2-(substituted)phenyl-pyrazolo-triazolo-pyrimidine derivatives. In addition to pharmacological characterization, a molecular modeling investigation on these compounds further elucidated the effect of different substituents at the pyrazolo-triazolo-pyrimidine scaffold on affinity and selectivity to hA(3)AR.


Subject(s)
Pyrazoles/chemistry , Pyridines/chemistry , Receptor, Adenosine A3/chemistry , Triazoles/chemistry , Animals , CHO Cells , Cricetinae , Humans , Models, Molecular , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...