Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (208)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39007625

ABSTRACT

The most common peripheral neuronal feature of pain is a lowered stimulation threshold or hypersensitivity of terminal nerves from the dorsal root ganglia (DRG). One proposed cause of this hypersensitivity is associated with the interaction between immune cells in the peripheral tissue and neurons. In vitro models have provided foundational knowledge in understanding how these mechanisms result in nociceptor hypersensitivity. However, in vitro models face the challenge of translating efficacy to humans. To address this challenge, a physiologically and anatomically relevant in vitro model has been developed for the culture of intact dorsal root ganglia (DRGs) in three isolated compartments in a 48-well plate. Primary DRGs are harvested from adult Sprague Dawley rats after humane euthanasia. Excess nerve roots are trimmed, and the DRG is cut into appropriate sizes for culture. DRGs are then grown in natural hydrogels, enabling robust growth in all compartments. This multi-compartment system offers anatomically relevant isolation of the DRG cell bodies from neurites, physiologically relevant cell types, and mechanical properties to study the interactions between neural and immune cells. Thus, this culture platform provides a valuable tool for investigating treatment isolation strategies, ultimately leading to an improved screening approach for predicting pain.


Subject(s)
Ganglia, Spinal , Rats, Sprague-Dawley , Animals , Ganglia, Spinal/cytology , Rats , Neurons/cytology , Cell Culture Techniques/methods , Tissue and Organ Harvesting/methods
2.
PLoS One ; 19(5): e0300254, 2024.
Article in English | MEDLINE | ID: mdl-38696450

ABSTRACT

Low back pain, knee osteoarthritis, and cancer patients suffer from chronic pain. Aberrant nerve growth into intervertebral disc, knee, and tumors, are common pathologies that lead to these chronic pain conditions. Axonal dieback induced by capsaicin (Caps) denervation has been FDA-approved to treat painful neuropathies and knee osteoarthritis but with short-term efficacy and discomfort. Herein, we propose to evaluate pyridoxine (Pyr), vincristine sulfate (Vcr) and ionomycin (Imy) as axonal dieback compounds for denervation with potential to alleviate pain. Previous literature suggests Pyr, Vcr, and Imy can cause undesired axonal degeneration, but no previous work has evaluated axonal dieback and cytotoxicity on adult rat dorsal root ganglia (DRG) explants. Thus, we performed axonal dieback screening using adult rat DRG explants in vitro with Caps as a positive control and assessed cytotoxicity. Imy inhibited axonal outgrowth and slowed axonal dieback, while Pyr and Vcr at high concentrations produced significant reduction in axon length and robust axonal dieback within three days. DRGs treated with Caps, Vcr, or Imy had increased DRG cytotoxicity compared to matched controls, but overall cytotoxicity was minimal and at least 88% lower compared to lysed DRGs. Pyr did not lead to any DRG cytotoxicity. Further, neither Pyr nor Vcr triggered intervertebral disc cell death or affected cellular metabolic activity after three days of incubation in vitro. Overall, our findings suggest Pyr and Vcr are not toxic to DRGs and intervertebral disc cells, and there is potential for repurposing these compounds for axonal dieback compounds to cause local denervation and alleviate pain.


Subject(s)
Axons , Denervation , Ganglia, Spinal , Intervertebral Disc , Animals , Ganglia, Spinal/drug effects , Ganglia, Spinal/pathology , Rats , Intervertebral Disc/drug effects , Intervertebral Disc/pathology , Axons/drug effects , Capsaicin/pharmacology , Rats, Sprague-Dawley , Male , Vincristine/pharmacology
3.
J Biomater Sci Polym Ed ; 35(2): 164-189, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37847579

ABSTRACT

Type I collagen is a predominant fibrous protein that makes up the extracellular matrix. Collagen enhances cell attachment and is commonly used in three-dimensional culture systems, to mimic the native extracellular environment, for primary sensory neurons such as dorsal root ganglia (DRG). However, the effects of collagen concentration on adult rat DRG neurite growth have not been assessed in a physiologically relevant, three-dimensional culture. This study focuses on the effects of type I collagen used in a methacrylated hyaluronic acid (MAHA)-laminin-collagen gel (triple gel) on primary adult rat DRG explants in vitro. DRGs were cultured in triple gels, and the neurite lengths and number of support cells were quantified. Increased collagen concentration significantly reduced neurite length but did not affect support cell counts. Mechanical properties, fiber diameter, diffusivity, and mesh size of the triple gels with varying collagen concentration were characterized to further understand the effects of type I collagen on hydrogel property that may affect adult rat DRG explants. Gel stiffness significantly increased as collagen concentration increased and is correlated to DRG neurite length. Collagen concentration also significantly impacted fiber diameter but there was no correlation with DRG neurite length. Increasing collagen concentration had no significant effect on mesh size and diffusivity of the hydrogel. These data suggest that increasing type I collagen minimizes adult rat DRG explant growth in vitro while raising gel stiffness. This knowledge can help develop more robust 3D culture platforms to study sensory neuron growth and design biomaterials for nerve regeneration applications.


Subject(s)
Collagen Type I , Hydrogels , Rats , Animals , Hydrogels/pharmacology , Ganglia, Spinal , Neurites/physiology , Collagen/pharmacology , Neuronal Outgrowth , Cells, Cultured
4.
Cell Mol Bioeng ; 15(5): 391-407, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36444349

ABSTRACT

Introduction: Oxidative stress due to excess reactive oxygen species (ROS) is related to many chronic illnesses including degenerative disc disease and osteoarthritis. MnTnBuOE-2-PyP5+ (BuOE), a manganese porphyrin analog, is a synthetic superoxide dismutase mimetic that scavenges ROS and has established good treatment efficacy at preventing radiation-induced oxidative damage in healthy cells. BuOE has not been studied in degenerative disc disease applications and only few studies have loaded BuOE into drug delivery systems. The goal of this work is to engineer BuOE microparticles (MPs) as an injectable therapeutic for long-term ROS scavenging. Methods: Methacrylated chondroitin sulfate-A MPs (vehicle) and BuOE MPs were synthesized via water-in-oil polymerization and the size, surface morphology, encapsulation efficiency and release profile were characterized. To assess long term ROS scavenging of BuOE MPs, superoxide scavenging activity was evaluated over an 84-day time course. In vitro cytocompatibility and cellular uptake were assessed on human intervertebral disc cells. Results: BuOE MPs were successfully encapsulated in MACS-A MPs and exhibited a slow-release profile over 84 days. BuOE maintained high potency in superoxide scavenging after encapsulation and after 84 days of incubation at 37 °C as compared to naked BuOE. Vehicle and BuOE MPs (100 µg/mL) were non-cytotoxic on nucleus pulposus cells and MPs up to 23 µm were endocytosed. Conclusions: BuOE MPs can be successfully fabricated and maintain potent superoxide scavenging capabilities up to 84-days. In vitro assessment reveals the vehicle and BuOE MPs are not cytotoxic and can be taken up by cells. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-022-00744-w.

5.
JOR Spine ; 5(3): e1212, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36203864

ABSTRACT

Chronic low back pain is a global socioeconomic crisis and treatments are lacking in part due to inadequate models. Etiological research suggests that the predominant pathology associated with chronic low back pain is intervertebral disc degeneration. Various research teams have created rat models of disc degeneration, but the clinical translatability of these models has been limited by an absence of robust chronic pain-like behavior. To address this deficit, disc degeneration was induced via an artificial annular tear in female Sprague Dawley rats. The subsequent degeneration, which was allowed to progress for 18-weeks, caused a drastic reduction in disc volume. Furthermore, from week 10 till study conclusion, injured animals exhibited significant axial hypersensitivity. At study end, intervertebral discs were assessed for important characteristics of human degenerated discs: extracellular matrix breakdown, hypocellularity, inflammation, and nerve sprouting. All these aspects were significantly increased in injured animals compared to sham controls. Also of note, 20 significant correlations were detected between selected outcomes including a moderate and highly significant correlation (R = 0.59, p < 0.0004) between axial hypersensitivity and disc nerve sprouting. These data support this model as a rigorous platform to explore the pathobiology of disc-associated low back pain and to screen treatments.

6.
JOR Spine ; 5(1): e1187, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35386760

ABSTRACT

Background: Chronic low back pain (LBP) is a leading cause of disability, but treatments for LBP are limited. Degeneration of the intervertebral disc due to loss of neuroinhibitory sulfated glycosaminoglycans (sGAGs) allows nerves from dorsal root ganglia to grow into the core of the disc. Treatment with a decellularized tissue hydrogel that contains sGAGs may inhibit nerve growth and prevent disc-associated LBP. Methods: A protocol to decellularize porcine nucleus pulposus (NP) was adapted from previous methods. DNA, sGAG, α-gal antigen, and collagen content were analyzed before and after decellularization. The decellularized tissue was then enzymatically modified to be injectable and form a gel at 37°C. Following this, the mechanical properties, microstructure, cytotoxicity, and neuroinhibitory properties were analyzed. Results: The decellularization process removed 99% of DNA and maintained 74% of sGAGs and 154% of collagen compared to the controls NPs. Rheology demonstrated that regelled NP exhibited properties similar to but slightly lower than collagen-matched controls. Culture of NP cells in the regelled NP demonstrated an increase in metabolic activity and DNA content over 7 days. The collagen content of the regelled NP stayed relatively constant over 7 days. Analysis of the neuroinhibitory properties demonstrated regelled NP significantly inhibited neuronal growth compared to collagen controls. Conclusions: The decellularization process developed here for porcine NP tissue was able to remove the antigenic material while maintaining the sGAG and collagen. This decellularized tissue was then able to be modified into a thermally forming gel that maintained the viability of cells and demonstrated robust neuroinhibitory properties in vitro. This biomaterial holds promise as an NP supplement to prevent nerve growth into the native disc and NP in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...