Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 23(1): 164, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35219299

ABSTRACT

BACKGROUND: The ability of plants to withstand and thrive in an adverse environment is crucial to ensure their survivability and yield performance. The WRKY transcription factors (TFs) have crucial roles in plant growth, development and stress response, particularly drought stress. In oil palm, drought is recognized as one of the major yield limiting factors. However, the roles of WRKY TFs in the drought response of oil palm is unclear. RESULTS: Herein, we studied the transcriptome of drought treated oil palm leaf and identified 40 differentially expressed genes (DEGs) of WRKY TFs, of which 32 DEGs were upregulated and 8 DEGs were downregulated in response to drought stress in oil palm. They were categorized into Groups I to IV based on the numbers of WRKY domain and the structural difference in the zinc finger domain. Multiple stress- and hormone-responsive cis-regulatory elements were detected in the drought responsive oil palm EgWRKY (Dro-EgWRKY) genes. Fourteen of the 15 selected oil palm WRKY (EgWRKY) genes demonstrated a tissue-specific expression profile except for EgWRKY28 (Group I), which was expressed in all tissues tested. The expression levels of 15 candidate EgWRKYs were upregulated upon salinity and heat treatments, while several genes were also inducible by abscisic acid, methyl jasmonate, salicylic acid and hydrogen peroxide treatments. Members of the Group III WRKY TFs including EgWRKY07, 26, 40, 52, 59, 73 and 81 displayed multiple roles in drought- and salinity-response under the modulation of phytohormones. CONCLUSIONS: EgWRKY TFs of oil palm are involved in phytohormones and abiotic stress responses including drought, salinity and heat. EgWRKY07, 26, 59 and 81 from Group III maybe important regulators in modulating responses of different abiotic stresses. Further functional analysis is required to understand the underlying mechanism of WRKY TFs in the regulatory network of drought stress.


Subject(s)
Arecaceae , Droughts , Gene Expression Regulation, Plant , Hormones , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Plant J ; 91(1): 97-113, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28370622

ABSTRACT

The oil biosynthesis pathway must be tightly controlled to maximize oil yield. Oil palm accumulates exceptionally high oil content in its mesocarp, suggesting the existence of a unique fruit-specific fatty acid metabolism transcriptional network. We report the complex fruit-specific network of transcription factors responsible for modulation of oil biosynthesis genes in oil palm mesocarp. Transcriptional activation of EgWRI1-1 encoding a key master regulator that activates expression of oil biosynthesis genes, is activated by three ABA-responsive transcription factors, EgNF-YA3, EgNF-YC2 and EgABI5. Overexpression of EgWRI1-1 and its activators in Arabidopsis accelerated flowering, increased seed size and oil content, and altered expression levels of oil biosynthesis genes. Protein-protein interaction experiments demonstrated that EgNF-YA3 interacts directly with EgWRI1-1, forming a transcription complex with EgNF-YC2 and EgABI5 to modulate transcription of oil biosynthesis pathway genes. Furthermore, EgABI5 acts downstream of EgWRKY40, a repressor that interacts with EgWRKY2 to inhibit the transcription of oil biosynthesis genes. We showed that expression of these activators and repressors in oil biosynthesis can be induced by phytohormones coordinating fruit development in oil palm. We propose a model highlighting a hormone signaling network coordinating fruit development and fatty acid biosynthesis.


Subject(s)
Arecaceae/metabolism , Fruit/metabolism , Palm Oil/metabolism , Arecaceae/genetics , Fruit/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Growth Regulators/metabolism , Plant Oils/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Proteome Sci ; 13: 28, 2015.
Article in English | MEDLINE | ID: mdl-26617468

ABSTRACT

BACKGROUND: The oil palm Elaeis guineensis Jacq. which produces the highest yield per unit land area of the oil crops is the most important commercial oil crop in South East Asia. The fleshy mesocarp of oil palm fruit, where oil is mostly derived from, contains up to 90 % dry weight of oil (one of the most concentrated in plant tissues). Hence, there is attention given to gain insights into the processes of oil deposition in this oil rich tissue. For that purpose, two-dimensional differential gel electrophoresis (DIGE) coupled with western assays, were used here to analyze differential protein levels in genetically-related high-and low-yielding oil palm mesocarps. RESULTS: From the DIGE comparative analysis in combination with western analysis, 41 unique differentially accumulated proteins were discovered. Functional categorization of these proteins placed them in the metabolisms of lipid, carbohydrate, amino acids, energy, structural proteins, as well as in other functions. In particular, higher abundance of fructose-1,6-biphosphate aldolase combined with reduced level of triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase may be indicative of important flux balance changes in glycolysis, while amino acid metabolism also appeared to be closely linked with oil yield. CONCLUSIONS: Forty-one proteins in several important biological pathways were identified as exhibiting differential in abundance at critical oil production stages. These confirm that oil yield is a complex trait involving the regulation of genes in multiple biological pathways. The results also provide insights into key control points of lipid biosynthesis in oil palm and can assist in the development of genetic markers for use in oil palm breeding programmes.

4.
Mar Biotechnol (NY) ; 13(5): 845-56, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21181422

ABSTRACT

Type III polyketide synthases (PKSs) produce an array of metabolites with diverse functions. In this study, we have cloned the complete reading frame encoding type III PKS (SbPKS) from a brown seaweed, Sargassum binderi, and characterized the activity of its recombinant protein biochemically. The deduced amino acid sequence of SbPKS is 414 residues in length, sharing a higher sequence similarity with bacterial PKSs (38% identity) than with plant PKSs. The Cys-His-Asn catalytic triad of PKS is conserved in SbPKS with differences in some of the residues lining the active and CoA binding sites. The wild-type SbPKS displayed broad starter substrate specificity to aliphatic long-chain acyl-CoAs (C(6)-C(14)) to produce tri- and tetraketide pyrones. Mutations at H(331) and N(364) caused complete loss of its activity, thus suggesting that these two residues are the catalytic residues for SbPKS as in other type III PKSs. Furthermore, H227G, H227G/L366V substitutions resulted in increased tetraketide-forming activity, while wild-type SbPKS produces triketide α-pyrone as a major product. On the other hand, mutant H227G/L366V/F93A/V95A demonstrated a dramatic decrease of tetraketide pyrone formation. These observations suggest that His(227) and Leu(366) play an important role for the polyketide elongation reaction in SbPKS. The conformational changes in protein structure especially the cavity of the active site may have more significant effect to the activity of SbPKS compared with changes in individual residues.


Subject(s)
Cloning, Molecular , Gene Expression Regulation, Plant/physiology , Polyketide Synthases/metabolism , Sargassum/enzymology , Amino Acid Sequence , Base Sequence , Catalytic Domain , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Phylogeny , Polyketide Synthases/classification , Polyketide Synthases/genetics , Sargassum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...