Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34883562

ABSTRACT

The use of cement as a soil stabilization agent is one of the common solutions to enhancing the engineering properties of soil. However, the impact and cost of using cement have raised environmental concerns, generating much interest in the search for alternative materials to reduce the use of cement as a stabilizing agent in soil treatment. This study looked into limiting cement content in peat soil stabilization by using fly ash waste and polypropylene fiber (PPF). It focused on soil mechanical mediation for stabilization of peat with fly ash cement and PPF cement by comparing the mechanical properties, using unconfined compressive strength (UCS) and California bearing ratio (CBR) tests. The control (untreated) peat specimen and specimens with either fly ash (10%, 20% and 30%) and PPF (0.1%, 0.15% and 0.2%) were studied. Test results showed that 30% of fly ash and cement content displays the highest UCS and CBR values and gives the most reliable compressibility properties. On the other hand, UCS and CBR test results indicate optimum values of PPF-cement stabilizing agent content in the specimen of 0.15% PPF and 30% cement. Selected specimens were analyzed using scanning electron microscopy (SEM), and PPF threads were found to be well surrounded by cement-stabilized peat matrices. It was also observed that the specimen with 30% fly ash generated more hydration products when compared to the specimen with 100% cement content. It is concluded that the use of fly ash cement and PPF cement as stabilizing agents to limit the cement usage in peat soil treatment is potentially viable.

2.
Materials (Basel) ; 14(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946348

ABSTRACT

Oil palm shell (OPS) is an agricultural solid waste from the extraction process of palm oil. All these wastes from industry pose serious disposal issues for the environment. This research aims to promote the replacement of conventional coarse aggregates with eco-friendly OPS aggregate which offers several advantages, such as being lightweight, renewable, and domestically available. This paper evaluates the mechanical and thermal performances of renewable OPS lightweight concrete (LWC) reinforced with various type of synthetic polypropylene (SPP) fibers. Monofilament polypropylene (MPS) and barchip polypropylene straight (BPS) were added to concrete at different volume fractions (singly and hybrid) of 0%, 0.1%, 0.3% and 0.4%. All specimens were mixed by using a new mixing method with a time saving of up to 14.3% compared to conventional mixing methods. The effects of SPP fibers on the mechanical properties were investigated by compressive strength, splitting tensile strength and residual strength. The strength of the oil palm shell lightweight concrete hybrid 0.4% (OPSLWC-HYB-0.4%) mixture achieved the highest compressive strength of 29 MPa at 28 days. The inclusion of 0.3% of BPS showed a positive outcome with the lowest thermal conductivity value at 0.55 W/m °C. Therefore, the results revealed that incorporation of BPS fiber enhanced the performance of thermal conductivity tests as compared to inclusion of MPS fiber. Hence, renewable OPS LWC was proven to be a highly recommended environmentally friendly aggregate as an alternative solution to replace natural aggregates used in the concrete industry.

3.
Sensors (Basel) ; 16(3)2016 Mar 05.
Article in English | MEDLINE | ID: mdl-26959028

ABSTRACT

An improved single sided Rayleigh wave (R-wave) measurement was suggested to characterize surface breaking crack in steel reinforced concrete structures. Numerical simulations were performed to clarify the behavior of R-waves interacting with surface breaking crack with different depths and degrees of inclinations. Through analysis of simulation results, correlations between R-wave parameters of interest and crack characteristics (depth and degree of inclination) were obtained, which were then validated by experimental measurement of concrete specimens instigated with vertical and inclined artificial cracks of different depths. Wave parameters including velocity and amplitude attenuation for each case were studied. The correlations allowed us to estimate the depth and inclination of cracks measured experimentally with acceptable discrepancies, particularly for cracks which are relatively shallow and when the crack depth is smaller than the wavelength.

SELECTION OF CITATIONS
SEARCH DETAIL
...