Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(47): 17263-17272, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37956201

ABSTRACT

Intact protein mass spectrometry (MS) coupled with liquid chromatography was applied to characterize the pharmacokinetics and stability profiles of therapeutic proteins. However, limitations from chromatography, including throughput and carryover, result in challenges with handling large sample numbers. Here, we combined intact protein MS with multiple front-end separations, including affinity capture, SampleStream, and high-field asymmetric waveform ion mobility spectrometry (FAIMS), to perform high-throughput and specific mass measurements of a multivalent antibody with one antigen-binding fragment (Fab) fused to an immunoglobulin G1 (IgG1) antibody. Generic affinity capture ensures the retention of both intact species 1Fab-IgG1 and the tentative degradation product IgG1. Subsequently, the analytes were directly loaded into SampleStream, where each injection occurs within ∼30 s. By separating ions prior to MS detection, FAIMS further offered improvement in signal-overnoise by ∼30% for denatured protein MS via employing compensation voltages that were optimized for different antibody species. When enhanced FAIMS transmission of 1Fab-IgG1 was employed, a qualified assay was established for spiked-in serum samples between 0.1 and 25 µg/mL, resulting in ∼10% accuracy bias and precision coefficient of variation. Selective FAIMS transmission of IgG1 as the degradation surrogate product enabled more sensitive detection of clipped species for intact 1Fab-IgG1 at 5 µg/mL in serum, generating an assay to measure 1Fab-IgG1 truncation between 2.5 and 50% with accuracy and precision below 20% bias and coefficient of variation. Our results revealed that the SampleStream-FAIMS-MS platform affords high throughput, selectivity, and sensitivity for characterizing therapeutic antibodies from complex biomatrices qualitatively and quantitatively.


Subject(s)
Immunoglobulin G , Ion Mobility Spectrometry , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Chromatography, Liquid , Ions/chemistry
2.
Clin Cancer Res ; 25(4): 1358-1368, 2019 02 15.
Article in English | MEDLINE | ID: mdl-29959143

ABSTRACT

PURPOSE: The treatment of acute myeloid leukemia (AML) has not significantly changed in 40 years. Cytarabine- and anthracycline-based chemotherapy induction regimens (7 + 3) remain the standard of care, and most patients have poor long-term survival. The reapproval of Mylotarg, an anti-CD33-calicheamicin antibody-drug conjugate (ADC), has demonstrated ADCs as a clinically validated option to enhance the effectiveness of induction therapy. We are interested in developing a next-generation ADC for AML to improve upon the initial success of Mylotarg. EXPERIMENTAL DESIGN: The expression pattern of CLL-1 and its hematopoietic potential were investigated. A novel anti-CLL-1-ADC, with a highly potent pyrrolobenzodiazepine (PBD) dimer conjugated through a self-immolative disulfide linker, was developed. The efficacy and safety profiles of this ADC were evaluated in mouse xenograft models and in cynomolgus monkeys. RESULTS: We demonstrate that CLL-1 shares similar prevalence and trafficking properties that make CD33 an excellent ADC target for AML, but lacks expression on hematopoietic stem cells that hampers current CD33-targeted ADCs. Our anti-CLL-1-ADC is highly effective at depleting tumor cells in AML xenograft models and lacks target independent toxicities at doses that depleted target monocytes and neutrophils in cynomolgus monkeys. CONCLUSIONS: Collectively, our data suggest that an anti-CLL-1-ADC has the potential to become an effective and safer treatment for AML in humans, by reducing and allowing for faster recovery from initial cytopenias than the current generation of ADCs for AML.


Subject(s)
Antibodies, Anti-Idiotypic/pharmacology , Immunoconjugates/pharmacology , Lectins, C-Type/immunology , Leukemia, Myeloid, Acute/drug therapy , Receptors, Mitogen/immunology , Animals , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Mice , Receptors, Mitogen/antagonists & inhibitors , Receptors, Mitogen/genetics , Sialic Acid Binding Ig-like Lectin 3/genetics , Sialic Acid Binding Ig-like Lectin 3/immunology , Xenograft Model Antitumor Assays
3.
Cancer Cell ; 31(3): 383-395, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28262555

ABSTRACT

The anti-FcRH5/CD3 T cell-dependent bispecific antibody (TDB) targets the B cell lineage marker FcRH5 expressed in multiple myeloma (MM) tumor cells. We demonstrate that TDBs trigger T cell receptor activation by inducing target clustering and exclusion of CD45 phosphatase from the synapse. The dimensions of the target molecule play a key role in the efficiency of the synapse formation. The anti-FcRH5/CD3 TDB kills human plasma cells and patient-derived myeloma cells at picomolar concentrations and results in complete depletion of B cells and bone marrow plasma cells in cynomolgus monkeys. These data demonstrate the potential for the anti-FcRH5/CD3 TDB, alone or in combination with inhibition of PD-1/PD-L1 signaling, in the treatment of MM and other B cell malignancies.


Subject(s)
Antibodies, Bispecific/therapeutic use , CD3 Complex/immunology , Epitopes , Immunological Synapses/physiology , Multiple Myeloma/drug therapy , Receptors, Fc/immunology , T-Lymphocytes/immunology , Animals , Cytokines/metabolism , Humans , Leukocyte Common Antigens/physiology , Lymphocyte Activation , Macaca fascicularis , Mice , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Programmed Cell Death 1 Receptor/physiology , Receptors, Antigen, T-Cell/physiology , Receptors, Fc/analysis
4.
Cancer Res ; 74(11): 3114-26, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24755469

ABSTRACT

Cancer genomes maintain a complex array of somatic alterations required for maintenance and progression of the disease, posing a challenge to identify driver genes among this genetic disorder. Toward this end, we mapped regions of recurrent amplification in a large collection (n=392) of primary human cancers and selected 620 genes whose expression is elevated in tumors. An RNAi loss-of-function screen targeting these genes across a panel of 32 cancer cell lines identified potential driver genes. Subsequent functional assays identified SHMT2, a key enzyme in the serine/glycine synthesis pathway, as necessary for tumor cell survival but insufficient for transformation. The 26S proteasomal subunit, PSMB4, was identified as the first proteasomal subunit with oncogenic properties promoting cancer cell survival and tumor growth in vivo. Elevated expression of SHMT2 and PSMB4 was found to be associated with poor prognosis in human cancer, supporting the development of molecular therapies targeting these genes or components of their pathways.


Subject(s)
Oncogenes , Proteasome Endopeptidase Complex/genetics , Animals , Catalysis , Cell Line , Cell Line, Tumor , Cell Survival , DNA Copy Number Variations , Disease Progression , Gene Deletion , Genome , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Prognosis , RNA Interference
5.
PLoS Comput Biol ; 6(2): e1000684, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20195492

ABSTRACT

Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPARgamma has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPARgamma has been validated through two supporting biological assays.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Culture Techniques/methods , Models, Biological , Cell Line, Tumor , Female , Gene Expression Profiling , Histocytochemistry , Humans , Image Processing, Computer-Assisted , PPAR gamma/metabolism , Phenotype , Receptor, ErbB-2/metabolism , Reproducibility of Results
6.
Biochem Biophys Res Commun ; 369(3): 977-81, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18334228

ABSTRACT

Until recently the mechanism for the enrichment of milk with calcium was thought to be almost entirely via the secretory pathway. However, recent studies suggest that a plasma membrane calcium ATPase, PMCA2, is the primary mechanism for calcium transport into milk, highlighting a major role for apical calcium transport. We compared the expression of the recently identified secretory calcium ATPase, SPCA2, and SPCA1, in the mouse mammary gland during development. SPCA2 levels increased over 35-fold during lactation with expression localized to luminal secretory cells, while SPCA1 increased only a modest 2-fold and was expressed throughout the cells of the mammary gland. We also observed major differences in the localization of PMCA2 and PMCA1. Our studies highlight the likely specific roles of PMCA2 and SPCA2 in lactation and indicate that calcium transport into milk is a complex interplay between apical and secretory pathways.


Subject(s)
Calcium-Transporting ATPases/metabolism , Lactation/metabolism , Mammary Glands, Animal/enzymology , Mammary Glands, Animal/growth & development , Animals , Calcium/metabolism , Calcium-Transporting ATPases/analysis , Calcium-Transporting ATPases/genetics , Cell Line , Female , Mice , Milk/metabolism , Plasma Membrane Calcium-Transporting ATPases/analysis , Plasma Membrane Calcium-Transporting ATPases/genetics , Plasma Membrane Calcium-Transporting ATPases/metabolism
7.
Front Biosci ; 12: 3468-74, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17485314

ABSTRACT

Despite some notable successes cancer remains, for the most part, a seemingly intractable problem. There is, however, a growing appreciation that targeting the tumor epithelium in isolation is not sufficient as there is an intricate mutually sustaining synergy between the tumor epithelial cells and their surrounding stroma. As the details of this dialogue emerge, new therapeutic targets have been proposed. The FDA has already approved drugs targeting microenvironmental components such as VEGF and aromatase and many more agents are in the pipeline. In this article, we describe some of the "druggable" targets and processes within the tumor microenvironment and review the approaches being taken to disrupt these interactions.


Subject(s)
Neoplasms/pathology , Angiogenesis Inhibitors/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aromatase Inhibitors/pharmacology , Diphosphonates/pharmacology , Humans , Signal Transduction
8.
Nat Methods ; 4(4): 359-65, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17396127

ABSTRACT

Extracellular matrix is a key regulator of normal homeostasis and tissue phenotype. Important signals are lost when cells are cultured ex vivo on two-dimensional plastic substrata. Many of these crucial microenvironmental cues may be restored using three-dimensional (3D) cultures of laminin-rich extracellular matrix (lrECM). These 3D culture assays allow phenotypic discrimination between nonmalignant and malignant mammary cells, as the former grown in a 3D context form polarized, growth-arrested acinus-like colonies whereas the latter form disorganized, proliferative and nonpolar colonies. Signaling pathways that function in parallel in cells cultured on plastic become reciprocally integrated when the cells are exposed to basement membrane-like gels. Appropriate 3D culture thus provides a more physiologically relevant approach to the analysis of gene function and cell phenotype ex vivo. We describe here a robust and generalized method for the culturing of various human breast cell lines in three dimensions and describe the preparation of cellular extracts from these cultures for molecular analyses. The procedure below describes the 3D 'embedded' assay, in which cells are cultured embedded in an lrECM gel (Fig. 1). By lrECM, we refer to the solubilized extract derived from the Engelbreth-Holm-Swarm mouse sarcoma cells. For a discussion of user options regarding 3D matrices, see Box 1. Alternatively, the 3D 'on-top' assay, in which cells are cultured on top of a thin lrECM gel overlaid with a dilute solution of lrECM, may be used as described in Box 2 (Fig. 1 and Fig. 2).


Subject(s)
Breast Neoplasms/pathology , Epithelial Cells , Mammary Glands, Human , Cell Culture Techniques , Cell Line, Tumor , Culture Media , Epithelial Cells/cytology , Epithelial Cells/pathology , Extracellular Matrix/chemistry , Female , Humans , Laminin/chemistry , Mammary Glands, Human/cytology , Mammary Glands, Human/pathology
9.
Mol Oncol ; 1(1): 84-96, 2007 Jun.
Article in English | MEDLINE | ID: mdl-18516279

ABSTRACT

3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/biosynthesis , Signal Transduction , Cell Culture Techniques , Cell Line, Tumor , Female , Humans , Neoplasm Invasiveness , Neoplasm Metastasis
SELECTION OF CITATIONS
SEARCH DETAIL
...