Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Small ; 19(38): e2301744, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37231559

ABSTRACT

Application of Si anodes is hindered by severe capacity fading due to pulverization of Si particles during the large volume changes of Si during charge/discharge and repeated formation of the solid-electrolyte interphase. To address these issues, considerable efforts have been devoted to the development of Si composites with conductive carbons (Si/C composites). However, Si/C composites with high C content inevitably show low volumetric capacity because of low electrode density. For practical applications, the volumetric capacity of a Si/C composite electrode is more important than gravimetric capacity, but volumetric capacity in pressed electrodes is rarely reported. Herein, a novel synthesis strategy is demonstrate for a compact Si nanoparticle/graphene microspherical assembly with interfacial stability and mechanical strength achieved by consecutively formed chemical bonds using 3-aminopropyltriethoxysilane and sucrose. The unpressed electrode (density: 0.71 g cm-3 ) shows a reversible specific capacity of 1470 mAh g-1 with a high initial coulombic efficiency of 83.7% at a current density of 1 C-rate. The corresponding pressed electrode (density: 1.32 g cm-3 ) exhibits high reversible volumetric capacity of 1405 mAh cm-3 and gravimetric capacity of 1520 mAh g-1 with a high initial coulombic efficiency of 80.4% and excellent cycling stability of 83% over 100 cycles at 1 C-rate.

2.
Mater Horiz ; 10(6): 2013-2023, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37222107

ABSTRACT

Owing to the rise in global population and living standards, waste treatment has inevitably become a critical issue for a sustainable environment. In particular, for an effective recycling process, it is vital to disassemble different types of materials by removing adhesives used in the packaging. However, this removal process requires harsh solvents (acidic and organic) that are unfriendly to nature and may cause additional pollution. To address this issue, functional adhesive materials that can be removed without the use of harsh solvents have drawn significant attention. One promising approach is to utilize the stimuli-responsive polymers to synthesize pressure sensitive adhesives (PSAs); however, it is technically challenging to simultaneously satisfy (i) strong initial adhesion (without stimulus), (ii) stimuli-responsive sufficient reduction of adhesion, and (iii) reversibility. In this study, thermo-switchable PSAs were synthesized by copolymerizing N-isopropylacrylamide (NIPAM), which possesses thermal-responsive properties; acrylic acid, which endows adhesive properties; and 2-ethylhexyl acrylate, which has a low glass transition temperature to attain sufficient flexibility. The synthesized NIPAM-based thermo-switchable PSAs exhibited significantly high peel strength at room temperature (∼15.41 N/25 mm at 20 °C), which decreased by ∼97% upon heating (∼0.46 N/25 mm at 80 °C). Importantly, no residues remained due to the cohesive nature of NIPAM at high temperature. The reversible adhesion behaviour of the thermo-switchable PSAs was retained during repeated heating and cooling cycles. Therefore, the developed thermo-switchable PSA can enhance the reusability and recyclability of valuable materials and minimize the use of toxic chemicals for adhesive removal, contributing to a more sustainable future.

3.
Chem Asian J ; 18(11): e202300280, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37057383

ABSTRACT

Herein, we report the in-situ synthesis of amorphous GeSe/CNT composite via defective-carbon-mediated chemical bonding for ultrastable Na-ion storage. Structural defects in CNTs play a crucial role in the chemical bonding and bonding strength in GeSe/CNTs composites. Specifically, the bonding strength tends to increase with increasing defect concentrations of CNTs. Remarkably, the strong chemical bonding between GeSe and CNTs significantly weakens Ge-Se bonds and promotes amorphization of GeSe, thus facilitating a reversible conversion reaction and enhancing Na-ion diffusion. Consequently, GeSe/CNTs composite exhibits outstanding cyclability of 87.9% even after 1000 cycles at 1 A g-1 and a high-rate capability of 288.3 mA h g-1 at 10 A g-1 . Our work presents a promising approach for the amorphization of electrode materials enabled by the defective-carbon-mediated strong chemical bonding for Li-, Na-, and K-ion batteries.

4.
Light Sci Appl ; 12(1): 37, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36740599

ABSTRACT

High-power terahertz radiation was observed to be emitted from a gas jet irradiated by 100-terawatt-class laser pulses in the laser-wakefield acceleration of electrons. The emitted terahertz radiation was characterized in terms of its spectrum, polarization, and energy dependence on the accompanying electron bunch energy and charge under various gas target conditions. With a nitrogen target, more than 4 mJ of energy was produced at <10 THz with a laser-to-terahertz conversion efficiency of ~0.15%. Such strong terahertz radiation is hypothesized to be produced from plasma electrons accelerated by the ponderomotive force of the laser and the plasma wakefields on the time scale of the laser pulse duration and plasma period. This model is examined with analytic calculations and particle-in-cell simulations to better understand the generation mechanism of high-energy terahertz radiation in laser-wakefield acceleration.

5.
Plant Pathol J ; 39(1): 149-157, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36760057

ABSTRACT

Phytoplasmas were discovered in diseased Elaeocarpus sylvestris trees growing on Jeju Island that showed symptoms of yellowing and darkening in the leaves. Leaf samples from 14 symptomatic plants in Jeju-si and Seogwipo-si were collected and phytoplasma 16S rRNA was successfully amplified by nested polymerase chain reaction using universal primers. The sequence analysis detected two phytoplasmas, which showed 99.5% identity to 'Candidatus Phytoplasma asteris' and 'Ca. P. malaysianum' affiliated to 16SrI and 16SrXXXII groups, respectively. Through polymerase chain reaction-restriction fragment length polymorphism (RFLP) analyses using the AfaI (RsaI) restriction enzyme, the presence of two phytoplasmas strains as well as cases of mixed infection of these strains was detected. In a virtual RFLP analysis with 17 restriction enzymes, the 16S rRNA sequence of the 'Ca. P. asteris' strain was found to match the pattern of the 16SrI-B subgroup. In addition, the phytoplasmas in the mixed-infection cases could be distinguished using specific primer sets. In conclusion, this study confirmed mixed infection of two phytoplasmas in one E. sylvestris plant, and also the presence of two phytoplasmas (of the 16SrⅠ and 16SrXXXⅡ groups) in Jeju Island (Republic of Korea).

6.
Small ; 17(32): e2101930, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34216430

ABSTRACT

Graphene is extensively investigated for various energy storage systems. However, the very low density (<0.01 g cm-3 ) of graphene nanosheets has hindered its further applications. To solve this issue, a controlled assembly of 2D graphene building blocks should be developed into graphene microspheres with high packing density, and restacking of graphene should be prevented to ensure an electrochemically accessible surface area during the assembly. Furthermore, graphene microspheres should have multiple 1D external conductive architecture to promote contacts with the neighbors. This study reports in situ growth of novel graphene nanostructures in reduced graphene oxide microspherical assembly (denoted as GT/GnS@rGB) with restacking resistance and interparticle contacts, for electrochemical energy storage. The GT/GnS@rGB showed high gravimetric (231.8 F g-1 ) and volumetric (181.5 F cm-3 ) capacitances at 0.2 A g-1 in organic electrolyte with excellent rate capabilities of 94.3% (@ 0.2 vs 10 Ag-1 ). Furthermore, GT/GnS@rGB exhibited excellent cycling stability (96.1% of the initial capacitance after 100 000 charge/discharge cycles at 2 A g-1 ). As demonstrated in the electrochemical evaluation as electrode materials for electrical double-layer capacitors, unique structural and textural features of the GT/GnS@rGB would be beneficial in the use of graphene assembly for energy storage applications.

7.
Molecules ; 26(9)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066676

ABSTRACT

Microcolumns have a stacked structure composed of an electron emitter, electron lens (source lens), einzel lens, and a deflector manufactured using a micro electro-mechanical system process. The electrons emitted from the tungsten field emitter mostly pass through the aperture holes. However, other electrons fail to pass through because of collisions around the aperture hole. We used Raman scattering measurements and X-ray photoelectron spectroscopy analyses to investigate the influence of electron beam bombardment on a Si electron lens irradiated by acceleration voltages of 0, 20, and 30 keV. We confirmed that the crystallinity was degraded, and carbon-related contamination was detected at the surface and edge of the aperture hole of the Si electron lens after electron bombardment for 24 h. Carbon-related contamination on the surface of the Si electron lens was verified by analyzing the Raman spectra of the carbon-deposited Si substrate using DC sputtering and a carbon rod sample. We report the crystallinity and the origin of the carbon-related contamination of electron Si lenses after electron beam bombardment by non-destructive Raman scattering and XPS analysis methods.

8.
J Obstet Gynaecol ; 41(4): 605-611, 2021 May.
Article in English | MEDLINE | ID: mdl-32815448

ABSTRACT

The lymph node status is the most important prognostic factor for endometrial cancer. This study aimed to assess whether sentinel lymph node mapping (SLNM) is applicable in endometrial cancer. A retrospective review of patients with endometrial cancer who were diagnosed and treated in Asan Medical Centre from September 2015 to December 2017 was conducted. One hundred patients underwent robotic (da Vinci®) or laparoscopic surgical treatment, including SLNM with indocyanine green (ICG) fluorescence detection using the Firefly® and NIR/ICG systems. At least one lymph node area was observed in 100% of SLNM cases. Sentinel node detection and frozen biopsy were performed in all cases, and all patients with metastasis were found on SLNM. The sensitivity and negative predictive value were both 100% in the patient-by-patient and station-by-station analyses. SLNM appears to be a feasible method to reduce the morbidity and increase the detection rate in early-stage endometrial carcinoma.What is already known on this subject? There are studies that it is safe to diagnose the possibility of lymph node metastasis through sentinel lymph node mapping in endometrial cancer.What do the results of this study add? In this study, it is shown that the accuracy of sentinel lymph node mapping is 100% accurate.What are the implications of these findings for clinical practise and/or further research? Therefore, total lymphadenectomy will not be necessary for the future.


Subject(s)
Coloring Agents , Endometrial Neoplasms/diagnostic imaging , Indocyanine Green , Lymphatic Metastasis/diagnostic imaging , Optical Imaging/statistics & numerical data , Sentinel Lymph Node/diagnostic imaging , Adult , Aged , Endometrial Neoplasms/pathology , Female , Humans , Lymph Node Excision , Middle Aged , Optical Imaging/methods , Predictive Value of Tests , Sensitivity and Specificity , Sentinel Lymph Node Biopsy
9.
Nanoscale ; 12(43): 22140-22149, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33125011

ABSTRACT

Herein, triethoxysilane-derived SiOx is used as a robust adhesive anchor to bind Si nanoparticles (NPs) and carbon nanotubes (CNTs) to prepare a structurally reinforced Si/CNT microsphere composite. The chemical reaction between the silanol groups of triethoxysilane with the hydroxyl groups on the Si surface and acid-treated CNTs induce strong chemical bonds between the Si NPs and CNTs and among neighboring CNTs, facilitating electron-conduction pathways and structural integrity of the composite, even under severe stress/strain. Thus, the structurally reinforced Si/CNT/SiOx microsphere composite exhibits superior cyclability: ∼88% of its initial capacity of 1112 mA h g-1 is retained after 100 cycles at 0.5 A g-1. Moreover, the Si/CNT/SiOx composite exhibits a negligible change in electrode thickness after 100 cycles. The stable electrochemical behavior and negligible change in the electrode thickness are attributed to the maintenance of the electron-conduction pathways and structural integrity of the Si/CNT/SiOx composite, enabled by the binding of neighboring CNTs with the SiOx anchor.

10.
ACS Omega ; 4(3): 5304-5309, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-31459701

ABSTRACT

Recently, K-ion batteries (KIBs) have attracted attention for potential applications in next-generation energy storage devices principally on the account of their abundancy and lower cost. Herein, for the first time, we report an anatase TiO2-derived Magnéli phase Ti6O11 as a novel anode material for KIBs. We incorporate pristine carbon nanotube (CNT) on the TiO2 host materials due to the low electronic conductivity of the host materials. TiO2 transformed to Magnéli phase Ti6O11 after the first insertion/deinsertion of K ions. From the second cycle, Magnéli phase Ti6O11/CNT composite showed reversible charge/discharge profiles with ∼150 mA h g-1 at 0.05 A g-1. Ex situ X-ray diffraction and transmission electron microscopy analyses revealed that the charge storage process of Magnéli phase Ti6O11 proceeded via the conversion reaction during potassium ion insertion/deinsertion. The Magnéli phase Ti6O11/CNT composite electrode showed long-term cycling life over 500 cycles at 200 mA g-1, exhibiting a capacity retention of 76% and a high Coulombic efficiency of 99.9%. These salient results presented here provide a novel understanding of the K-ion storage mechanisms in the extensively investigated oxide-based material for Li-ion batteries and Na-ion batteries, shedding light on the development of promising electrode materials for next-generation batteries.

11.
Environ Health Prev Med ; 22(1): 34, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-29165122

ABSTRACT

BACKGROUND: Carbon monoxide (CO) is one of the primary components of emissions from light-duty vehicles, and reportedly comprises 77% of all pollutants emitted in terms of concentration. Exposure to CO aggravates cardiovascular disease and causes other health disorders. The study was aimed to assess the negative effects by injecting different amounts of CO concentration directly to human volunteers boarding in the car. METHODS: Human volunteers were exposed to CO concentrations of 0, 33.2, and 72.4 ppm, respectively during the first test and 0, 30.3, and 48.8 ppm respectively during the second test while seated in the car. The volunteers were exposed to each concentration for approximately 45 min. After exposure, blood pressure measurement, blood collection (carboxyhemoglobin [COHb] analysis), medical interview, echocardiography test, and cognitive reaction test were performed. RESULT: In patients who were exposed to a mean concentration of CO for 72.4 ± 1.4 ppm during the first exposure test and 48.8 ± 3.7 ppm during the second exposure test, the COHb level exceeded 2%. Moreover, the diastolic blood pressure was decreased while increasing in CO concentration after exposure. The medical interview findings showed that the degree of fatigue was increased and the degree of concentration was reduced when the exposed concentration of CO was increased. CONCLUSION: Although the study had a limited sample size, we found that even a low concentration of CO flowing into a car could have a negative influence on human health, such as change of blood pressure and degree of fatigue.


Subject(s)
Blood Pressure/drug effects , Carbon Monoxide/adverse effects , Carboxyhemoglobin/analysis , Adult , Analysis of Variance , Carbon Monoxide/administration & dosage , Carbon Monoxide/analysis , Cognition , Echocardiography , Environmental Monitoring , Female , Humans , Hypotension/chemically induced , Male , Middle Aged , Republic of Korea , Vehicle Emissions/toxicity , Volunteers
12.
Environ Health Toxicol ; 30 Suppl: s2015005, 2015.
Article in English | MEDLINE | ID: mdl-26206366

ABSTRACT

OBJECTIVES: To protect public health from risk, the Minister of Environment in Korea legislated an act concerning the registration and evaluation of chemical substances. In this study, we estimated the value of a statistical life (VSL) of carcinogenic chemicals to evaluate the socioeconomic analysis in Korea. METHODS: The estimation of the health benefit can be calculated through an individual's VSL and willingness to pay (WTP). To estimate the VSL and WTP, we used a contingent valuation method through a web-based survey. RESULTS: The survey is conducted with 1434 people living in Seoul and six large cities. An analysis of the survey is essential to review the distribution of the characteristics of the target population. The statistically significant variables affecting the WTP are location, age, household income, quality of life. Through the review of data, we secured statistical validity. The WTP was estimated as 41205 Korean won (KRW)/person, and the estimated VSL appeared as 796 million KRW/person. CONCLUSIONS: There is a case in which the amount of statistical life value is estimated in connection with domestic environmental policy, fine dust, etc. However, there are no cases of evaluation for chemical. The utilization of this result is possible for conducting other study with chemicals.

13.
Environ Health Toxicol ; 30 Suppl: s2015006, 2015.
Article in English | MEDLINE | ID: mdl-26206367

ABSTRACT

OBJECTIVES: This study is conducted to estimate the cost paid by the public suffering from disease possibly caused by chemical and to examine the effect on public health. METHODS: Cost-benefit analysis is an important factor in analysis and decision-making and is an important policy decision tool in many countries. Cost-of-illness (COI), a kind of scale-based analysis method, estimates the potential value lost as a result of illness as a monetary unit and calculates the cost in terms of direct, indirect and psychological costs. This study estimates direct medical costs, transportation fees for hospitalization and outpatient treatment, and nursing fees through a number of patients suffering from disease caused by chemicals in order to analyze COI, taking into account the cost of productivity loss as an indirect cost. RESULTS: The total yearly cost of the diseases studied in 2012 is calculated as 77 million Korean won (KRW) per person. The direct and indirect costs being 52 million KRW and 23 million KRW, respectively. Within the total cost of illness, mental and behavioral disability costs amounted to 16 million KRW, relevant blood immunological parameters costs were 7.4 million KRW, and disease of the nervous system costs were 6.7 million KRW. CONCLUSIONS: This study reports on a survey conducted by experts regarding diseases possibly caused by chemicals and estimates the cost for the general public. The results can be used to formulate a basic report for a social-economic evaluation of the permitted use of chemicals and limits of usage.

14.
Environ Health Toxicol ; 29: e2014014, 2014.
Article in English | MEDLINE | ID: mdl-25384387

ABSTRACT

OBJECTIVES: Some plants were placed in indoor locations frequented by asthmatics in order to evaluate the quality of indoor air and examine the health benefits to asthmatics. METHODS: The present study classified the participants into two groups: households of continuation and households of withdrawal by a quasi-experimental design. The households of continuation spent the two observation terms with indoor plants, whereas the households of withdrawal passed the former observation terms with indoor plants and went through the latter observation term without any indoor plants. RESULTS: The household of continuation showed a continual decrease in the indoor concentrations of volatile organic compounds (VOCs) during the entire observation period, but the household of withdrawal performed an increase in the indoor concentrations of VOCs, except formaldehyde and toluene during the latter observation term after the decrease during the former observation term. Peak expiratory flow rate (PEFR) increased in the households of continuation with the value of 13.9 L/min in the morning and 20.6 L/ min in the evening, but decreased in the households of withdrawal with the value of -24.7 L/min in the morning and -30.2 L/min in the evening in the first experimental season. All of the households exhibited a decrease in the value of PEFR in the second experimental season. CONCLUSIONS: Limitations to the generalizability of findings regarding the presence of plants indoors can be seen as a more general expression of such a benefit of human-environment relations.

SELECTION OF CITATIONS
SEARCH DETAIL
...