Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Cell ; 88: 102412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776732

ABSTRACT

Tumor necrosis factor superfamily member 11 (TNFSF11), or receptor activator of nuclear factor-κB ligand (RANKL), is a crucial osteoclast-stimulating factor binding to RANK on osteoclast membranes. Mouse models are powerful tools for understanding the genetic mechanisms of related diseases. Here, we examined the utility of Tnfsf11 mutation in mice for understanding the mechanisms of bone remodeling and dysmorphology. The Tnfsf11gum mouse, discovered in 2011 at Jackson Laboratory, was used to study the genetic landscape associated with TNFSF11 inactivation in bone marrow tissues. Tnfsf11gum/+ and Tnfsf11+/+ mice were subjected to Micro-CT observation, ELISA analysis, histological evaluation, and massively-parallel mRNA sequencing (RNA-Seq) analysis. Tnfsf11gum/+ mice exhibited severe osteopetrotic changes in the bone marrow cavity, along with significantly lower serum RANKL levels and a reduced number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in the bone marrow compared to those in Tnfsf11+/+ mice. However, tooth eruption between Tnfsf11gum/+ and Tnfsf11+/+ mice did not differ. Furthermore, genes involved in osteoblast proliferation and differentiation, including Gli1, Slc35b2, Lrrc17, and Junb were differentially expressed. Heterozygous mutation of TNFSF11 was also associated with a slightly increased expression of genes involved in osteoclast proliferation and differentiation, including Tcirg1, Junb, Anxa2, and Atp6ap1. Overall, we demonstrate that single gene mutations in Tnfsf11 cause bone resorption instability without significantly altering the genes related to osteoblast and osteoclast activity in the bone marrow cavity, thus establishing an optimal resource as an experimental animal model for bone resorption in bone biology research.


Subject(s)
Disease Models, Animal , Osteoclasts , Osteopetrosis , RANK Ligand , Animals , Osteopetrosis/genetics , Osteopetrosis/pathology , Osteopetrosis/metabolism , RANK Ligand/metabolism , RANK Ligand/genetics , Mice , Osteoclasts/metabolism , Osteoclasts/pathology , Mutation
3.
Biomater Res ; 26(1): 41, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064494

ABSTRACT

BACKGROUND: Although several studies on the Mg-Zn-Ca system have focused on alloy compositions that are restricted to solid solutions, the influence of the solid solution component of Ca on Mg-Zn alloys is unknown. Therefore, to broaden its utility in orthopedic applications, studies on the influence of the addition of Ca on the microstructural, mechanical, and corrosion properties of Mg-Zn alloys should be conducted. In this study, an in-depth investigation of the effect of Ca on the mechanical and bio-corrosion characteristics of the Mg-Zn alloy was performed for the optimization of a clinically approved Mg alloy system comprising Ca and Zn. METHODS: The Mg alloy was fabricated by gravitational melting of high purity Mg, Ca, and Zn metal grains under an Ar gas environment. The surface and cross-section were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to analyze their crystallographic structures. Electrochemical and immersion tests in Hank's balanced salt solution were used to analyze their corrosion resistance. Tensile testing was performed with universal testing equipment to investigate the impact of Ca addition. The examination of cytotoxicity for biometric determination was in line with the ISO10993 standard. RESULTS: In this study, the 0.1% Ca alloy had significantly retarded grain growth due to the formation of the tiny and well-dispersed Ca2Mg6Zn3 phase. In addition, the yield strength and elongation of the 0.1% Ca alloy were more than 50% greater than the 2% Zn alloy. The limited cell viability of the 0.3% Ca alloy could be attributed to its high corrosion rate, whereas the 0.1% Ca alloy demonstrated cell viability of greater than 80% during the entire experimental period. CONCLUSION: The effect of the addition of Ca on the microstructure, mechanical, and corrosion characteristics of Mg-Zn alloys was analyzed in this work. The findings imply that the Mg-Zn alloy system could be optimized by adding a small amount of Ca, improving mechanical properties while maintaining corrosion rate, thus opening the door to a wide range of applications in orthopedic surgery.

4.
Ann Occup Environ Med ; 32: e23, 2020.
Article in English | MEDLINE | ID: mdl-32802339

ABSTRACT

BACKGROUND: Female farmers have a high prevalence of knee osteoarthritis (KOA) in South Korea. Femoral bowing has been reported to be related to KOA by increasing load on the mechanical axis. This study aimed to investigate factors related to femoral bowing in Korean female farmers. METHODS: We analyzed the legs of 264 female farmers registered with the Korea farmers' knee cohort of Jeonnam Center for Farmers' Safety and Health. A structured questionnaire was used to determine sociodemographic variables, agricultural career, cumulative squatting working time (CSWT), and cumulative heavy lifting working time. Femoral bone density was measured and Kellgren-Lawrence (KL) grades were obtained from the knee radiographs. Mechanical axis angle (MAA), femoral bowing angle (FBA), anatomical lateral distal femoral angle (aLDFA), anatomical medial proximal tibial angle (aMPTA), and condylar-plateau angle (CPA) were measured. We examined the relationship between the FBA and related factors by using multiple linear regression. RESULTS: The proportion of individuals with radiographic KOA (≥ KL grade 2) in this study was 37.9%. As KL grades increased, MAA, FBA, and CPA increased, whereas aLDFA and aMPTA decreased. FBA increased with age. Multiple linear regression analyses using FBA as a dependent variable showed relationship with higher age, lower height, higher BMI, lower bone mineral density, longer CSWT, and longer agricultural careers. CONCLUSIONS: The results of this study suggest that external factors related to agricultural work in female farmers was associated with femoral bowing, in addition to internal factors such as age, bone density, height, and obesity.

5.
Photomed Laser Surg ; 35(2): 78-86, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27626322

ABSTRACT

OBJECTIVE: This study was designed to investigate the effect of 635-nm irradiation from a light-emitting diode (LED) on osteoclastogenesis in receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL)-stimulated mouse bone marrow-derived macrophages (BMMs). We determined whether 635-nm irradiation modulated the RANKL-induced osteoclastic signaling pathway in heat shock protein-27 (HSP27)-silenced cells and analyzed the functional cross talk between these factors in osteoclastic differentiation and activation. BACKGROUND: HSP27, a member of the small HSP family, regulates oxidative stress. Clinical reports suggest that low-level laser therapy or LED therapy (LEDT) could be an effective alternative treatment for osteolytic bone disease. METHODS: In control or HSP27-siRNA-treated BMMs, the effects of LED irradiation with 635 nm and 5 mW/cm2 on RANKL-induced osteoclastic differentiation and activity were assessed by measuring tartrate-resistant acid phosphatase (TRAP) and resorption pit formation. Quantitative real-time polymerase chain reaction and western blot assays were carried out to assess the mRNA expression of osteoclastogenesis-related genes and phosphorylation of c-Jun-N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), AKT, and p38, respectively. Intracellular reactive oxygen species (ROS) generation was measured using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA) detection method. RESULTS: The 635-nm irradiation treatment significantly increased HSP27 expression and decreased intracellular ROS generation, as well as p38 and AKT phosphorylation, leading to reductions in the expression of c-fos, NFATc1, and DC-STAMP and TRAP activation and osteoclastic bone resorption in RANKL-induced BMMs. However, in HSP27-silenced BMMs, no change was observed. CONCLUSIONS: Thus, 635-nm irradiation modulates RANKL-induced osteoclastogenesis via HSP27 in BMMs. Thus, HSP27 may play a role in regulating the osteoclastic response to LEDT.


Subject(s)
Gene Expression Regulation , Low-Level Light Therapy , Macrophages/radiation effects , Osteogenesis/radiation effects , RANK Ligand/genetics , Animals , Blotting, Western , Bone Resorption/genetics , Cells, Cultured , Disease Models, Animal , Macrophages/cytology , Male , Mice , Mice, Inbred BALB C , Osteoclasts/pathology , Osteoclasts/radiation effects , RNA, Small Interfering/metabolism , Random Allocation , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
6.
J Biomed Mater Res B Appl Biomater ; 103(4): 807-15, 2015 May.
Article in English | MEDLINE | ID: mdl-25115628

ABSTRACT

We report on methodologies for use in the design of a biodegradable Mg alloy appropriate for load-bearing but temporary orthopedic implant applications. Comparative studies of Mg-5Ca and Mg-5Ca-1Zn were conducted to explore the effects of a combination of minor alloying and hot extrusion, on the alloy's mechanical properties and corrosion resistance. The extruded Mg-5Ca-1Zn exhibited high ultimate compressive strength of 385 MPa and suffered no significant structural degradation even after immersion in simulated body fluid for 30 days. Mg-5Ca-1Zn alloy showed the mechanical strength and controlled corrosion rate to be considered as an ideal candidate for biodegradable orthopedic implant material.


Subject(s)
Alloys/chemistry , Magnesium/chemistry , Materials Testing , Compressive Strength , Humans , Orthopedic Procedures , Weight-Bearing
7.
J Mol Histol ; 45(6): 653-63, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25001207

ABSTRACT

One of the theories regarding oral carcinogenesis is that the tumor growth is initiated from cancer stem cells (CSCs) that self-renew and give rise to differentiated tumor cells, like stem cells do in normal tissues. The most common methods of CSC identification are based on CSC marker expression in carcinogenesis. This study examined the expression of CD133 and CD44, the most commonly used CSC biomarkers in oral squamous cell sarcoma (SCC), with the goal of identifying molecular biomarkers whose expression is associated with the multistep oral carcinogenesis. The expression of CD133, CD44, proliferating cell nuclear antigen (PCNA), and Cytokeratin (CK) was examined by Western blot analysis and confirmed by immunohistochemistry in a 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis model. Also, the expression of aldehyde dehydrogenase 1 (ALDH1), OCT-4 and Nanog were investigated for alteration of cancer cell stemness by Western blot. Along with the progress of multistep carcinogenesis, there were slight increases of CD133 and CD44 expression in the dysplasia group compared with normal rats. However, CD133 protein level was significantly overexpressed in SCC. The expression of PCNA and CK were low in normal group, but sequentially increased in SCC. ALDH1, Nanog and OCT-4 expression were significantly increased according to SCC grade during carcinogenesis. The findings indicate that CD133 is useful in identifying oral CSCs, which suggests that CD133 may serve as a predictor to identify CSCs with a high risk of oral cancer development.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinogenesis/metabolism , Carcinoma, Squamous Cell/metabolism , Neoplastic Stem Cells/metabolism , Tongue Neoplasms/metabolism , 4-Nitroquinoline-1-oxide , AC133 Antigen , Aldehyde Dehydrogenase 1 Family , Animals , Antigens, CD/metabolism , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/pathology , Glycoproteins/metabolism , Hyaluronan Receptors/metabolism , Male , Nanog Homeobox Protein , Octamer Transcription Factor-3/metabolism , Peptides/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Rats, Wistar , Retinal Dehydrogenase/metabolism , Tongue Neoplasms/chemically induced , Tongue Neoplasms/pathology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...