Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mycobiology ; 51(5): 313-319, 2023.
Article in English | MEDLINE | ID: mdl-37929002

ABSTRACT

During disease surveys of Angelica acutiloba plants in Korea, leaf spot symptoms were observed in a field in Andong in July 2019, and stem rot symptoms in vinyl greenhouses in Yangpyeong in April 2020. Incidence of leaf spot and stem rot of the plants ranged from 10 to 20% and 5 to 30%, respectively. Morphological and cultural characteristics of fungal isolates from the leaf spot and stem rot symptoms fitted into those of the genus Phoma. Molecular phylogenetic analyses of two single-spore isolates from the symptoms using concatenated sequences of LSU, ITS, TUB2, and RPB2 genes authenticated an independent cluster from other Didymella (anamorph: Phoma) species. Moreover, the isolates showed different morphological and cultural characteristics in comparison to closely related Didymella species. These discoveries confirmed the novelty of the isolates. Pathogenicity of the novel Didymella species isolates was substantiated on leaves and stems of A. acutiloba through artificial inoculation. Thus, this study reveals that Didymella acutilobae sp. nov. causes leaf spot and stem rot in Angelica acutiloba.

2.
Mycobiology ; 51(6): 393-400, 2023.
Article in English | MEDLINE | ID: mdl-38179122

ABSTRACT

During a disease survey in October 2019, leaf spot symptoms with a yellow halo were observed on Korean angelica (Anglica gigas) plants grown in fields in Pyeongchang, Gangwon Province, Korea. Incidence of diseased leaves of the plants in the investigated fields ranged from 10% to 60%. Morphological and cultural characteristics of two single-spore isolates from the leaf lesions indicated that they belonged to the genus Didymella. Molecular phylogenetic analyses using combined sequences of LSU, ITS, TUB2, and RPB2 regions showed distinct clustering of the isolates from other Didymella species. In addition, the morphological and cultural characteristics of the isolates were somewhat different from those of closely related Didymella spp. Therefore, the novelty of the isolates was proved based on the investigations. Pathogenicity of the novel Didymella species isolates was confirmed on leaves of Korean angelica plants via artificial inoculation. This study reveals that Didymella gigantis sp. nov. causes leaf spot in Korean angelica.

SELECTION OF CITATIONS
SEARCH DETAIL
...