Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000355

ABSTRACT

Postmenopausal osteoporosis, characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-driven bone formation, presents substantial health implications. In this study, we investigated the role of black goat extract (BGE), derived from a domesticated native Korean goat, estrogen-like activity, and osteoprotective effects in vitro. BGE's mineral and fatty acid compositions were analyzed via the ICP-AES method and gas chromatography-mass spectrometry, respectively. In vitro experiments were conducted using MCF-7 breast cancer cells, MC3T3-E1 osteoblasts, and RAW264.7 osteoclasts. BGE exhibits a favorable amount of mineral and fatty acid content. It displayed antimenopausal activity by stimulating MCF-7 cell proliferation and augmenting estrogen-related gene expression (ERα, ERß, and pS2). Moreover, BGE positively impacted osteogenesis and mineralization in MC3T3-E1 cells through Wnt/ß-catenin pathway modulation, leading to heightened expression of Runt-related transcription factor 2, osteoprotegerin, and collagen type 1. Significantly, BGE effectively suppressed osteoclastogenesis by curtailing osteoclast formation and activity in RAW264.7 cells, concurrently downregulating pivotal signaling molecules, including receptor activator of nuclear factor κ B and tumor necrosis factor receptor-associated factor 6. This study offers a shred of preliminary evidence for the prospective use of BGE as an effective postmenopausal osteoporosis treatment.


Subject(s)
Cell Differentiation , Goats , Osteoblasts , Osteoclasts , Osteogenesis , Animals , Mice , RAW 264.7 Cells , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Cell Differentiation/drug effects , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/cytology , Humans , Estrogens/pharmacology , Cell Proliferation/drug effects , Wnt Signaling Pathway/drug effects , MCF-7 Cells , Tissue Extracts/pharmacology
2.
Molecules ; 28(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903444

ABSTRACT

Postmenopausal women experience several symptoms, including inflammation and a sharp rise in oxidative stress caused by estrogen deprivation. Although estrogen replacement therapy (ERT) is generally regarded as an effective treatment for menopause, it has been used less frequently due to some adverse effects and high costs. Therefore, there is an immediate need to develop an effective herbal-based treatment that is affordable for low-income populations. Acordingly, this study explored the estrogen-like properties of methanol extracts from Cynanchum wilfordii (CW) and Poligonum multiflorum (PM), two important medicinal plants in Republic of Korea, Japan, and China. Due to the similar names and morphologies of these two radixes, they are frequently confused in the marketplace. Our previous colleagues discriminated between these two plants. In this study, we investigated the estrogenic activity of PM and CW using several in vitro assays with their possible mechanism of action. First, their phytochemical contents, such as gallic acid, 2,3,5,4'-tetrahydroxystilbene-2-O-glucoside (TSG) and emodin, were quantified using high-performance liquid chromatography (HPLC). Secondly, estrogen-like activity was assessed utilizing the well-known E-screen test and gene expression analysis in estrogen receptor (ER)-positive MCF7 cells. ROS inhibition and anti-inflammatory effects were analyzed using HaCaT and Raw 264.7 cells, respectively. Our findings demonstrate that PM extracts significantly increased the expression of the estrogen-dependent genes (ERα, ERß, pS2) and boosted MCF7 cell proliferation in comparison to CW extracts. Additionally, PM extract demonstrated a significant reduction in reactive oxygen species (ROS) production as well as an enhanced antioxidant profile compared to the CW extract. Further, the PM extract treatment significantly reduced the generation of nitric oxide (NO) in RAW 264.7 cells, a murine macrophage cell line, demonstrating the anti-inflammatory properties of the extract. Finally, this research offers an experimental foundation for the use of PM as a phytoestrogen to minimize menopausal symptoms.


Subject(s)
Estrogen Receptor alpha , Receptors, Estrogen , Humans , Female , Mice , Animals , MCF-7 Cells , Reactive Oxygen Species , Plant Extracts/pharmacology , Phytoestrogens , Anti-Inflammatory Agents
3.
Materials (Basel) ; 13(14)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709058

ABSTRACT

Dendropanax morbifera is a versatile plant that has been used as a herbal medicine due to its various useful medicinal effects. To protect its active component from biological stress and increase its drug efficacy as well as drug bioavailability, nanoemulsion was prepared. Dendropanax morbifera zinc oxide nanoparticles (DM-ZnO NPs) were synthesized using the plant extract via the co-precipitation method and loaded with active indole-3-carbinol for nanoemulsion formulation using the ultrasonication process. Field emission transmission electron microscope revealed the flower shape of the Dendropanax morbifera indole-3-carbinol zinc oxide nanoemulsion (DM-ZnO-I3C-NE). In contrast, DM-ZnO NPs showed a spheroid shape that coincides agreeably with field emission electron scanning microscope. The hydrodynamic sizes by dynamic light scattering are about 65 ± 3 nm and 239.6 ± 6 nm and the crystallite sizes from X-ray diffraction are 11.52 nm and 16.07 nm for DM-ZnO NPs and DM-ZnO-I3C-NE, respectively. In vitro analysis revealed the cytotoxicity of DM-ZnO-I3C-NE against a human lung cancer cell line (A549) at 12.5 µg/mL as well as reactive oxygen species (ROS) production. The DM-ZnO-I3C-NE-induced ROS generation level was higher than that of DM-ZnO NPs and free indole-3-carbinol. The synergistic effect of DM-ZnO and indole-3-carbinol indicates DM-ZnO-I3C-NE as a potential candidate for future lung cancer drug and could be scope for functional food.

SELECTION OF CITATIONS
SEARCH DETAIL
...