Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(4): 3596-3601, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29278320

ABSTRACT

Semitransparent flexible photovoltaic cells are advantageous for effective use of solar energy in many areas such as building-integrated solar-power generation and portable photovoltaic chargers. We report semitransparent and flexible organic solar cells (FOSCs) with high aperture, composed of doped graphene layers, ZnO, P3HT:PCBM, and PEDOT:PSS as anode/cathode transparent conductive electrodes (TCEs), electron transport layer, photoactive layer, and hole transport layer, respectively, fabricated based on simple solution processing. The FOSCs do not only harvest solar energy from ultraviolet-visible region but are also less sensitive to near-infrared photons, indicating semitransparency. For the anode/cathode TCEs, graphene is doped with bis(trifluoromethanesulfonyl)-amide or triethylene tetramine, respectively. Power conversion efficiency (PCE) of 3.12% is obtained from the fundamental FOSC structure, and the PCE is further enhanced to 4.23% by adding an Al reflective mirror on the top or bottom side of the FOSCs. The FOSCs also exhibit remarkable mechanical flexibilities through bending tests for various curvature radii.

2.
Nanotechnology ; 28(42): 425203, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28791967

ABSTRACT

We first employ highly-stable and -flexible (CF3SO2)2NH-doped graphene (TFSA/GR) and GR-encapsulated TFSA/GR (GR/TFSA/GR) transparent conductive electrodes (TCEs) prepared on polyethylene terephthalate substrates for flexible organic solar cells (OSCs). Compared to conventional indium tin oxide (ITO) TCEs, the TFSA-doped-GR TCEs show higher optical transmittance and larger sheet resistance. The TFSA/GR and GR/TFSA/GR TCEs show work functions of 4.89 ± 0.16 and 4.97 ± 0.18 eV, respectively, which are not only larger than those of the ITO TCEs but also indicate p-type doping of GR, and are therefore more suitable for anode TCEs of OSCs. In addition, typical GR/TFSA/GR-TCE OSCs are much more mechanically flexible than the ITO-TCE ones with their photovoltaic parameters being similar, as proved by bending tests as functions of cycle and curvature.

SELECTION OF CITATIONS
SEARCH DETAIL
...