Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 93(17)2019 09 01.
Article in English | MEDLINE | ID: mdl-31167918

ABSTRACT

Combating influenza is one of the perennial global public health issues to be managed. Antiviral drugs are useful for the treatment of influenza in the absence of an appropriate vaccine. However, the appearance of resistant strains necessitates a constant search for new drugs. In this study, we investigated novel anti-influenza drug candidates using in vitro and in vivo assays. We identified anti-influenza hit compounds using a high-throughput screening method with a green fluorescent protein-tagged recombinant influenza virus. Through subsequent analyses of their cytotoxicity and pharmacokinetic properties, one candidate (IY7640) was selected for further evaluation. In a replication kinetics analysis, IY7640 showed greater inhibitory effects during the early phase of viral infection than the viral neuraminidase inhibitor oseltamivir. In addition, we observed that hemagglutinin (HA)-mediated membrane fusion was inhibited by IY7640 treatment, indicating that the HA stalk region, which is highly conserved across various (sub)types of influenza viruses, may be the molecular target of IY7640. In an escape mutant analysis in cells, amino acid mutations were identified at the HA stalk region of the 2009 pandemic H1N1 (pH1N1) virus. Even though the in vivo efficacy of IY7640 did not reach complete protection in a lethal challenge study in mice, these results suggest that IY7640 has potential to be developed as a new type of anti-influenza drug.IMPORTANCE Anti-influenza drugs with broad-spectrum efficacy against antigenically diverse influenza viruses can be highly useful when no vaccines are available. To develop new anti-influenza drugs, we screened a number of small molecules and identified a strong candidate, IY7640. When added at the time of or after influenza virus infection, IY7640 was observed to successfully inhibit or reduce viral replication in cells. We subsequently discovered that IY7640 targets the stalk region of the influenza HA protein, which exhibits a relatively high degree of amino acid sequence conservation across various (sub)types of influenza viruses. Furthermore, IY7640 was observed to block HA-mediated membrane fusion of H1N1, H3N2, and influenza B viruses in cells. Although it appears less effective against strains other than H1N1 subtype viruses in a challenge study in mice, we suggest that the small molecule IY7640 has potential to be optimized as a new anti-influenza drug.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/prevention & control , Small Molecule Libraries/administration & dosage , Animals , Chlorocebus aethiops , Disease Models, Animal , Dogs , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Influenza Vaccines/pharmacology , Madin Darby Canine Kidney Cells , Membrane Fusion/drug effects , Mice , Mutation , Orthomyxoviridae Infections/immunology , Small Molecule Libraries/pharmacology , Vero Cells , Virus Replication/drug effects
2.
Biol Pharm Bull ; 40(9): 1475-1482, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28592715

ABSTRACT

A series of methyl ester of clovamide analogues, where the hydroxyl group of catechol moiety in caffeic acid and L-3,4-dihydroxyphenylalanine (L-dopa) was replaced with various functional groups, were synthesized and their inhibitory effects on nitric oxide (NO) production and inducible NO synthase (iNOS) expression in lipopolysaccharide (LPS)-induced BV2 cells were tested. Among the synthesized compounds, 3,5-ditrifluoromethyl analogue 9l (IC50=2.8 µM) exhibited a potency about 26.3 times greater than that of the parent compound 9a (IC50=73.6 µM) and suppressed NO production dose-dependently without cytotoxicity. Compound 9l also inhibited iNOS expression in LPS-induced BV2 cells at 2.5, 5 and 10 µM concentrations. These results suggested that the dihydroxyl group of catechol moiety in caffeic acid unit is not essential for the suppression of NO production and that 9l has potential as a potent inhibitor of NO production.


Subject(s)
Microglia/metabolism , Nitric Oxide/biosynthesis , Tyrosine/analogs & derivatives , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Caffeic Acids , Cell Line , Levodopa , Lipopolysaccharides , Mice , Nitric Oxide Synthase Type II/metabolism , Plant Extracts , Structure-Activity Relationship , Tyrosine/chemical synthesis , Tyrosine/chemistry , Tyrosine/pharmacology
3.
J Cereb Blood Flow Metab ; 27(6): 1142-51, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17106444

ABSTRACT

Excitotoxicity and oxidative stress mediate neuronal death after hypoxic-ischemic brain injury. We examined the possibility that targeting both N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity and oxidative stress would result in enhanced neuroprotection against hypoxic-ischemia. 2-Hydroxy-5-(2,3,5,6-tetrafluoro-4-trifluoromethyl-benzylamino)-benzoic acid (Neu2000) was derived from aspirin and sulfasalazine to prevent both NMDA neurotoxicity and oxidative stress. In cortical cell cultures, Neu2000 was shown to be an uncompetitive NMDA receptor antagonist and completely blocked free radical toxicity at doses as low as 0.3 micromol/L. Neu2000 showed marked neuroprotection in a masked fashion using histology and behavioral testing in two rodent models of focal cerebral ischemia without causing neurotoxic side effects. Neu2000 protected against the effects of middle cerebral artery occlusion, even when delivered 8 h after reperfusion. Single bolus administration of the drug prevented gray and white matter degeneration and spared neurologic function for over 28 days after MACO. Neu2000 may be a novel therapy for combating both NMDA receptor-mediated excitotoxicity and oxidative stress, the two major routes of neuronal death in ischemia, offering profound neuroprotection and an extended therapeutic window.


Subject(s)
Antioxidants/pharmacology , Benzoates/pharmacology , Brain Ischemia/prevention & control , N-Methylaspartate/antagonists & inhibitors , Animals , Aspirin/chemistry , Benzoates/therapeutic use , Brain Ischemia/drug therapy , Cells, Cultured , Excitatory Amino Acid Antagonists/chemistry , Excitatory Amino Acid Antagonists/pharmacology , Fluorobenzenes , Infarction, Middle Cerebral Artery , Mice , Oxidative Stress/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Salicylates , Sulfasalazine/chemistry , meta-Aminobenzoates
SELECTION OF CITATIONS
SEARCH DETAIL
...