Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 752
Filter
1.
Nat Commun ; 15(1): 5561, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956100

ABSTRACT

Structural deformation modifies the bandgap, exciton fine structure and phonon energy of semiconductors, providing an additional knob to control their optical properties. The impact can be exploited in colloidal semiconductor quantum dots (QDs), wherein structural stresses can be imposed in three dimensions while defect formation is suppressed by controlling surface growth kinetics. Yet, the control over the structural deformation of QDs free from optically active defects has not been reached. Here, we demonstrate strain-graded CdSe-ZnSe core-shell QDs with compositionally abrupt interface by the coherent pseudomorphic heteroepitaxy. Resulting QDs tolerate mutual elastic deformation of varying magnitudes at the interface with high structural fidelity, allowing for spectrally stable and pure emission of photons at accelerated rates with near unity luminescence efficiency. We capitalize on the asymmetric strain effect together with the quantum confinement effect to expand emission envelope of QDs spanning the entire visible region and exemplify their use in photonic applications.

2.
Article in English | MEDLINE | ID: mdl-38951014

ABSTRACT

BACKGROUND: Successful liberation from mechanical ventilation is one of the most crucial processes in critical care because it is the first step by which a respiratory failure patient begins to transition out of the intensive care unit and return to their own life. Therefore, when devising appropriate strategies for removing mechanical ventilation, it is essential to consider not only the individual experiences of healthcare professionals, but also scientific and systematic approaches. Recently, numerous studies have investigated methods and tools for identifying when mechanically ventilated patients are ready to breathe on their own. The Korean Society of Critical Care Medicine therefore provides these recommendations to clinicians about liberation from the ventilator. METHOD: Meta-analyses and comprehensive syntheses were used to thoroughly review, compile, and summarize the complete body of relevant evidence. All studies were meticulously assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method, and the outcomes were presented succinctly as evidence profiles. Those evidence syntheses were discussed by a multidisciplinary committee of experts in mechanical ventilation, who then developed and approved recommendations. RESULT: Recommendations for nine population, intervention, comparator, outcome (PICO) questions about ventilator liberation are presented in this document. This guideline includes seven conditional recommendations, one expert consensus recommendation, and one conditional deferred recommendation. CONCLUSIONS: We developed these clinical guidelines for mechanical ventilation liberation to provide meaningful recommendations. These guidelines reflect the best treatment for patients seeking liberation from mechanical ventilation.

3.
BMC Plant Biol ; 24(1): 527, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858674

ABSTRACT

BACKGROUND: Angelica Gigas (Purple parsnip) is an important medicinal plant that is cultivated and utilized in Korea, Japan, and China. It contains bioactive substances especially coumarins with anti-inflammatory, anti-platelet aggregation, anti-cancer, anti-diabetic, antimicrobial, anti-obesity, anti-oxidant, immunomodulatory, and neuroprotective properties. This medicinal crop can be genetically improved, and the metabolites can be obtained by embryonic stem cells. In this context, we established the protoplast-to-plant regeneration methodology in Angelica gigas. RESULTS: In the present investigation, we isolated the protoplast from the embryogenic callus by applying methods that we have developed earlier and established protoplast cultures using Murashige and Skoog (MS) liquid medium and by embedding the protoplast in thin alginate layer (TAL) methods. We supplemented the culture medium with growth regulators namely 2,4-dichlorophenoxyaceticacid (2,4-D, 0, 0.75, 1.5 mg L- 1), kinetin (KN, 0, 0.5, and 1.0 mg L- 1) and phytosulfokine (PSK, 0, 50, 100 nM) to induce protoplast division, microcolony formation, and embryogenic callus regeneration. We applied central composite design (CCD) and response surface methodology (RSM) for the optimization of 2,4-D, KN, and PSK levels during protoplast division, micro-callus formation, and induction of embryogenic callus stages. The results revealed that 0.04 mg L- 1 2,4-D + 0.5 mg L- 1 KN + 2 nM PSK, 0.5 mg L- 1 2,4-D + 0.9 mg L- 1 KN and 90 nM PSK, and 1.5 mg L- 1 2,4-D and 1 mg L- 1 KN were optimum for protoplast division, micro-callus formation and induction embryogenic callus. MS basal semi-solid medium without growth regulators was good for the development of embryos and plant regeneration. CONCLUSIONS: This study demonstrated successful protoplast culture, protoplast division, micro-callus formation, induction embryogenic callus, somatic embryogenesis, and plant regeneration in A. gigas. The methodologies developed here are quite useful for the genetic improvement of this important medicinal plant.


Subject(s)
Angelica , Plant Growth Regulators , Plant Somatic Embryogenesis Techniques , Protoplasts , Angelica/embryology , Plant Growth Regulators/pharmacology , Plant Somatic Embryogenesis Techniques/methods , Protoplasts/drug effects , Cell Division/drug effects
4.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766008

ABSTRACT

Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 ( Mdm2) conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a novel connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells adjacent to the ventricle in the setting of kidney failure. These findings were associated with brain inflammation and cell death. A separate mouse model of acute kidney injury also had an increase in circulating toxic tryptophan metabolites along with altered brain inflammation. Patients with advanced CKD similarly demonstrated elevated plasma kynurenine metabolites and quinolinic acid was uniquely correlated with fatigue and reduced quality of life in humans. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.

6.
Chem Commun (Camb) ; 60(44): 5731-5734, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742530

ABSTRACT

Gallium ion incorporation into silver indium gallium sulfide nanocrystals is investigated by various methods, including photoluminescence (PL) and X-ray photoelectron spectroscopy. The ZnS shell-growth enhances a PL quantum yield of up to 16%, with which the quantum dot light-emitting diode was successfully fabricated.

7.
Nutrients ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674828

ABSTRACT

There is growing evidence linking gut microbiota to overall health, including obesity risk and associated diseases. Lactiplantibacillus plantarum SKO-001, a probiotic strain isolated from Angelica gigas, has been reported to reduce obesity by controlling the gut microbiome. In this double-blind, randomised clinical trial, we aimed to evaluate the efficacy and safety of SKO-001 in reducing body fat. We included 100 participants randomised into SKO-001 or placebo groups (1:1) for 12 weeks. Dual-energy X-ray absorptiometry was used to objectively evaluate body fat reduction. Body fat percentage (p = 0.016), body fat mass (p = 0.02), low-density lipoprotein-cholesterol levels (p = 0.025), and adiponectin levels (p = 0.023) were lower in the SKO-001 group than in the placebo group after 12 weeks of SKO-001 consumption. In the SKO-001 group, the subcutaneous fat area (p = 0.003), total cholesterol levels (p = 0.003), and leptin levels (p = 0.014) significantly decreased after 12 weeks of SKO-001 consumption compared with baseline values. Additionally, SKO-001 did not cause any severe adverse reactions. In conclusion, SKO-001 is safe and effective for reducing body fat and has the potential for further clinical testing in humans.


Subject(s)
Probiotics , Humans , Double-Blind Method , Male , Female , Adult , Middle Aged , Adipose Tissue/drug effects , Obesity , Treatment Outcome , Lactobacillus plantarum , Gastrointestinal Microbiome/drug effects , Absorptiometry, Photon , Leptin/blood
8.
J Med Food ; 27(6): 502-509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669056

ABSTRACT

HemoHIM is a standardized medicinal herbal preparation consisting of extracts of Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia lactiflora Pallas that possesses immune regulatory activities. This study aimed to research the potential antioxidant effects of HemoHIM and its capacity for reducing fatigue in aged mice subjected to forced exercise. After administering HemoHIM 125 (500 mg/kg orally) for 4 weeks in 8-month-old female C57BL/6 mice (4 groups of 10 mice), various parameters were evaluated. The analyses revealed that HemoHIM enhanced swimming time and grip strength. In addition, it significantly reduced serum lactate levels and increased liver glutathione peroxidase (GPx) levels after exercise challenge. The expression levels of antioxidant enzymes and factors, including nuclear factor erythroid 2-related factor-2 (Nrf-2), heme oxygenase 1, superoxide dismutase, GPx, and glutathione reductase, were significantly higher in liver and muscle tissues of mice treated with HemoHIM. These results indicate that HemoHIM might function as an anti-fatigue and antioxidant agent by modulating the Nrf-2 signaling pathway.


Subject(s)
Angelica , Antioxidants , Fatigue , Glutathione Peroxidase , Liver , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Plant Extracts , Superoxide Dismutase , Animals , Antioxidants/pharmacology , Fatigue/drug therapy , Female , Angelica/chemistry , Mice , Glutathione Peroxidase/metabolism , Superoxide Dismutase/metabolism , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , NF-E2-Related Factor 2/metabolism , Cnidium/chemistry , Paeonia/chemistry , Physical Conditioning, Animal , Glutathione Reductase/metabolism , Humans , Aging/drug effects , Heme Oxygenase-1/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Oxidative Stress/drug effects
9.
Diabetes ; 73(7): 1167-1177, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38656940

ABSTRACT

Reduced kidney AMPK activity is associated with nutrient stress-induced chronic kidney disease (CKD) in male mice. In contrast, female mice resist nutrient stress-induced CKD. The role of kidney AMPK in sex-related organ protection against nutrient stress and metabolite changes was evaluated in diabetic kidney tubule-specific AMPKγ2KO (KTAMPKγ2ΚΟ) male and female mice. In wild-type (WT) males, diabetes increased albuminuria, urinary kidney injury molecule-1, hypertension, kidney p70S6K phosphorylation, and kidney matrix accumulation; these features were not exacerbated with KTAMPKγ2ΚΟ. Whereas WT females had protection against diabetes-induced kidney injury, KTAMPKγ2ΚΟ led to loss of female protection against kidney disease. The hormone 17ß-estradiol ameliorated high glucose-induced AMPK inactivation, p70S6K phosphorylation, and matrix protein accumulation in kidney tubule cells. The mechanism for female protection against diabetes-induced kidney injury is likely via an estrogen-AMPK pathway, as inhibition of AMPK led to loss of estrogen protection to glucose-induced mTORC1 activation and matrix production. RNA sequencing and metabolomic analysis identified a decrease in the degradation pathway of phenylalanine and tyrosine resulting in increased urinary phenylalanine and tyrosine levels in females. The metabolite levels correlated with loss of female protection. The findings provide new insights to explain evolutionary advantages to females during states of nutrient challenges.


Subject(s)
AMP-Activated Protein Kinases , Diabetic Nephropathies , Kidney , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Female , Male , Mice , AMP-Activated Protein Kinases/metabolism , Kidney/metabolism , Mice, Knockout , Phosphorylation , Estradiol/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Diabetes Mellitus, Experimental/metabolism
10.
ACS Appl Mater Interfaces ; 16(17): 21953-21964, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629409

ABSTRACT

While photoelectrochemical (PEC) cells show promise for solar-driven green hydrogen production, exploration of various light-absorbing multilayer coatings has yet to significantly enhance their hydrogen generation efficiency. Acidic conditions can enhance the hydrogen evolution reaction (HER) kinetics and reduce overpotential losses. However, prolonged acidic exposure deactivates noble metal electrocatalysts, hindering their long-term stability. Progress requires addressing catalyst degradation to enable stable, efficient, and acidic PEC cells. Here, we proposed a process design based on the photoilluminated redox deposition (PRoD) approach. We use this to grow crystalline Rh2P nanoparticles (NPs) with a size of 5-10 on 30 nm-thick TiO2, without annealing. Atomically precise reaction control was performed by using several cyclic voltammetry cycles coincident with light irradiation to create a system with optimal catalytic activity. The optimized photocathode, composed of Rh2P/TiO2/Al-ZnO/Cu2O/Sb-Cu2O/ITO, achieved an excellent photocurrent density of 8.2 mA cm-2 at 0 VRHE and a durable water-splitting reaction in a strong acidic solution. Specifically, the Rh2P-loaded photocathode exhibited a 5.3-fold enhancement in mass activity compared to that utilizing just a Rh catalyst. Furthermore, in situ scanning transmission electron microscopy (STEM) was performed to observe the real-time growth process of Rh2P NPs in a liquid cell.

11.
Int J Biol Macromol ; 268(Pt 2): 131908, 2024 May.
Article in English | MEDLINE | ID: mdl-38679269

ABSTRACT

Curcuma longa and Sargassum coreanum are commonly used in traditional pharmaceutical medicine to improve immune function in chronic diseases. The present study was designed to systematically elucidate the in vitro and in vivo immuno-enhancing effects of a combination of C. longa and S. coreanum extracts (CS) that contain polyphenols and saccharides as functional molecules in a cyclophosphamide (Cy)-induced model of immunosuppression. In primary splenocytes, we observed the ameliorative effects of CS on a Cy-induced immunosuppression model with low cytotoxicity and an optimal mixture procedure. CS treatment enhanced T- and B-cell proliferation, increased splenic natural killer-cell activity, and restored cytokine release. Wistar rats were orally administered low (30 mg/kg), intermediate (100 mg/kg), or high (300 mg/kg) doses of CS for four weeks, followed by oral administration of Cy (5 mg/kg) for four weeks. Compared with the vehicle group, low-, intermediate-, and high-dose CS treatment accelerated dose-dependent recovery of the serum level of tumor necrosis factor-α, interferon-γ, interleukin-2, and interleukin-12. These results suggest that CS treatment accelerates the amelioration of immune deficiency in Cy-treated primary splenocytes and rats, which supports considering it for immunity maintenance. Our findings provide experimental evidence for further research and clinical application in immunosuppressed patients.


Subject(s)
Killer Cells, Natural , Polyphenols , Rats, Wistar , Spleen , Animals , Polyphenols/pharmacology , Polyphenols/chemistry , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Rats , Spleen/drug effects , Spleen/immunology , Spleen/cytology , Cytokines/metabolism , Male , Cyclophosphamide/pharmacology , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry
12.
Osong Public Health Res Perspect ; 15(1): 18-32, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38481047

ABSTRACT

BACKGROUND: Limited information is available concerning the epidemiology of stroke and acute myocardial infarction (AMI) in the Republic of Korea. This study aimed to develop a national surveillance system to monitor the incidence of stroke and AMI using national claims data. METHODS: We developed and validated identification algorithms for stroke and AMI using claims data. This validation involved a 2-stage stratified sampling method with a review of medical records for sampled cases. The weighted positive predictive value (PPV) and negative predictive value (NPV) were calculated based on the sampling structure and the corresponding sampling rates. Incident cases and the incidence rates of stroke and AMI in the Republic of Korea were estimated by applying the algorithms and weighted PPV and NPV to the 2018 National Health Insurance Service claims data. RESULTS: In total, 2,200 cases (1,086 stroke cases and 1,114 AMI cases) were sampled from the 2018 claims database. The sensitivity and specificity of the algorithms were 94.3% and 88.6% for stroke and 97.9% and 90.1% for AMI, respectively. The estimated number of cases, including recurrent events, was 150,837 for stroke and 40,529 for AMI in 2018. The age- and sex-standardized incidence rate for stroke and AMI was 180.2 and 46.1 cases per 100,000 person-years, respectively, in 2018. CONCLUSION: This study demonstrates the feasibility of developing a national surveillance system based on claims data and identification algorithms for stroke and AMI to monitor their incidence rates.

13.
Toxicol Res ; 40(2): 297-311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525135

ABSTRACT

HemoHIM G is a functional food ingredient composed of a triple herbal combination of Angelica sinensis, Ligusticum chuanxiong, and Paeonia lactiflora, to improve impaired immune function. Considering the pharmacological benefits of its constituent herbal components, HemoHIM G is anticipated to have various health benefits; however, its toxicity has not been thoroughly evaluated. Here, we conducted a comprehensive study to assess the safety of HemoHIM G in terms of acute oral toxicity, 13-week repeat-dose toxicity, and genotoxicity. In the oral acute toxicity study, Sprague-Dawley rats were orally administered a single dose of HemoHIM G at 5000 mg/kg/day, the limit dose for the acute study. No abnormal findings or adverse effects were observed in this study, as confirmed by gross pathology. A 13-week repeated-dose toxicity study was conducted with HemoHIM G at doses of 1250, 2500, and 5000 mg/kg/day to examine the subchronic toxicity in both male and female rats after 28 days of dose-range finding study. No test substance-related clinical signs or mortality was observed at any of the tested doses. Gross pathology, hematology, blood chemistry, and histopathology were within normal ranges, further supporting the safety of HemoHIM G. Therefore, the NOAEL of HemoHIM G was considered to be at 5000 mg/kg/day for both sexes of rats. Bacterial reverse mutation tests, a chromosome aberration test in human peripheral blood lymphocytes, and a mouse micronuclei test were conducted to identify the potential genotoxicity of HemoHIM G. HemoHIM G is non-mutagenic and non-clastogenic. Collectively, these findings provide valuable evidence for the safe use of HemoHIM G as a functional food ingredient.

14.
PLoS One ; 19(3): e0300719, 2024.
Article in English | MEDLINE | ID: mdl-38527055

ABSTRACT

Climate change increases global temperatures, which is lethal to both livestock and humans. Heat stress is known as one of the various livestock stresses, and dairy cows react sensitively to high-temperature stress. We aimed to better understand the effects of heat stress on the health of dairy cows and observing biological changes. Individual cows were divided into normal (21-22 °C, 50-60% humidity) and high temperature (31-32 °C, 80-95% humidity), respectively, for 7-days. We performed metabolomic and transcriptome analyses of the blood and gut microbiomes of feces. In the high-temperature group, nine metabolites including linoleic acid and fructose were downregulated, and 154 upregulated and 72 downregulated DEGs (Differentially Expressed Genes) were identified, and eighteen microbes including Intestinimonas and Pseudoflavonifractor in genus level were significantly different from normal group. Linoleic acid and fructose have confirmed that associated with various stresses, and functional analysis of DEG and microorganisms showing significant differences confirmed that high-temperature stress is related to the inflammatory response, immune system, cellular energy mechanism, and microbial butyrate production. These biological changes were likely to withstand high-temperature stress. Immune and inflammatory responses are known to be induced by heat stress, which has been identified to maintain homeostasis through modulation at metabolome, transcriptome and microbiome levels. In these findings, heat stress condition can trigger alteration of immune system and cellular energy metabolism, which is shown as reduced metabolites, pathway enrichment and differential microbes. As results of this study did not include direct phenotypic data, we believe that additional validation is required in the future. In conclusion, high-temperature stress contributed to the reduction of metabolites, changes in gene expression patterns and composition of gut microbiota, which are thought to support dairy cows in withstanding high-temperature stress via modulating immune-related genes, and cellular energy metabolism to maintain homeostasis.


Subject(s)
Lactation , Linoleic Acid , Female , Humans , Cattle , Animals , Lactation/physiology , Linoleic Acid/metabolism , Heat-Shock Response/physiology , Homeostasis , Fructose/metabolism , Hot Temperature , Milk/metabolism
15.
Heliyon ; 10(6): e27383, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38515681

ABSTRACT

The mechanisms underlying chronic inflammatory diseases remain unclear. Therefore, researchers have explored the mechanisms underlying colitis using diverse materials. Recently, there has been an increasing interest in fermented products and bioconversion materials, their potential efficacy is being actively studied. Gochujang, a traditional Korean fermented product, is crafted by blending fermented Meju powder, gochu (Korean chili) powder, glutinous rice, and salt. In our study, we explored the effectiveness of Gochujang (500 mg/kg; Cheongju and Hongcheon, Korea) in dextran sulfate sodium (DSS)-induced colitis mice model. Gochujang was orally administered for 2 weeks, followed by the induction of colitis using 3% DSS in the previous week. During our investigation, Gochujang variants (TCG22-25, Cheongju and TCG22-48, Hongcheon) did not exhibit significant inhibition of weight reduction (p = 0.061) but notably (p = 0.001) suppressed the reduction in large intestine length in DSS-induced colitis mice. In the serum from colitis mice, TCG22-48 demonstrated reduced levels of the inflammatory cytokines interleukin (IL)-6 (p = 0.001) and tumor necrosis factor (TNF)-α (p = 0.001). Additionally, it inhibited the phosphorylation of Erk (p = 0.028), p38, and NF-κB (p = 0.001) the inflammatory mechanism. In our study, TCG22-25 demonstrated a reduction in the IL-6 level (p = 0.001) in serum and inhibited the phosphorylation of p38 and NF-κB (p = 0.001). Histological analysis revealed a significant (p = 0.001) reduction in the pathological score of the large intestine from TCG22-25 and TCG22-48. In conclusion, the intake of Gochujang demonstrates potent anti-inflammatory effects, mitigating colitis by preventing the large intestine length reduction of animals with colitis, lowering serum levels of TNF-α and IL-6 cytokines, and inhibiting histological disruption and inflammatory mechanism phosphorylation.

16.
Eur Radiol Exp ; 8(1): 39, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38503996

ABSTRACT

BACKGROUND: We investigated the tumor suppression effect of an ultrasound-sensitive doxorubicin-loaded liposome-based nanoparticle, IMP301, to enhance the synergistic effect with focused ultrasound (FUS) in an animal model of pancreatic cancer. METHODS: Thirty nude mice with xenografts of PANC-1 human pancreatic cancer cells were randomly and prospectively allocated to 6 different groups (5 per group) each for Study-1 (dose-response test) and Study-2 (synergistic effect test). Study-1 consisted of control, gemcitabine, Doxil with FUS, and three different doses of IMP301 (2, 4, 6 mg/kg) with FUS groups. Study-2 consisted of control, FUS only, gemcitabine, Doxil with FUS, and IMP301 (4 mg/kg) with or without FUS groups. Differences in tumor volume and growth rate were evaluated by one-way ANOVA and Student-Newman-Keuls test. RESULTS: In Study-1, 4 mg/kg or greater IMP301 with FUS groups showed lower tumor growth rates of 14 ± 4 mm3/day (mean ± standard deviation) or less, compared to the control, gemcitabine, and Doxil with FUS groups with rates exceeding 28 ± 5 (p < 0.050). The addition of FUS in Study-2 decreased the tumor growth rate in the IMP301-treated groups from 36 ± 17 to 9 ± 6, which was lower than the control, FUS only, gemcitabine, and Doxil with FUS groups (p < 0.050). CONCLUSIONS: IMP301 combined with FUS exhibited higher tumor growth suppression compared to the use of a conventional drug alone or the combination with FUS. The present study showed the potential of IMP301 to enhance the synergistic effect with FUS for the treatment of pancreatic cancer. RELEVANCE STATEMENT: This article aims to evaluate the synergistic effect of FUS and ultrasound-responsive liposomal drug in tumor growth suppression by using xenograft mouse model of pancreatic ductal adenocarcinoma. FUS-induced ultrasound-sensitive drug release may be a potential noninvasive repeatable treatment option for patients with locally advanced or unresectable pancreatic cancer. KEY POINTS: • Modification of conventional drugs combined with FUS would maximize tumor suppression. • IMP301 with FUS had higher tumor suppression effect compared to conventional chemotherapy. • This image-guided drug delivery would enhance therapeutic effects of systemic chemotherapy.


Subject(s)
Doxorubicin/analogs & derivatives , Nanoparticles , Pancreatic Neoplasms , Humans , Mice , Animals , Gemcitabine , Heterografts , Mice, Nude , Cell Line, Tumor , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Polyethylene Glycols
17.
Acute Crit Care ; 39(1): 1-23, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38476061

ABSTRACT

BACKGROUND: Successful liberation from mechanical ventilation is one of the most crucial processes in critical care because it is the first step by which a respiratory failure patient begins to transition out of the intensive care unit and return to their own life. Therefore, when devising appropriate strategies for removing mechanical ventilation, it is essential to consider not only the individual experiences of healthcare professionals, but also scientific and systematic approaches. Recently, numerous studies have investigated methods and tools for identifying when mechanically ventilated patients are ready to breathe on their own. The Korean Society of Critical Care Medicine therefore provides these recommendations to clinicians about liberation from the ventilator. METHODS: Meta-analyses and comprehensive syntheses were used to thoroughly review, compile, and summarize the complete body of relevant evidence. All studies were meticulously assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method, and the outcomes were presented succinctly as evidence profiles. Those evidence syntheses were discussed by a multidisciplinary committee of experts in mechanical ventilation, who then developed and approved recommendations. RESULTS: Recommendations for nine PICO (population, intervention, comparator, and outcome) questions about ventilator liberation are presented in this document. This guideline includes seven conditional recommendations, one expert consensus recommendation, and one conditional deferred recommendation. CONCLUSIONS: We developed these clinical guidelines for mechanical ventilation liberation to provide meaningful recommendations. These guidelines reflect the best treatment for patients seeking liberation from mechanical ventilation.

18.
Adv Mater ; : e2312250, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300222

ABSTRACT

The morphology of heterostructured semiconductor nanocrystals (h-NCs) dictates the spatial distribution of charge carriers and their recombination dynamics and/or transport, which are the main performance indicators of photonic applications utilizing h-NCs. The inability to control the morphology of heterovalent III-V/II-VI h-NCs composed of heavy-metal-free elements hinders their practical use. As a case study of III-V/II-VI h-NCs, the growth control of ZnSe epilayers on InP NCs is demonstrated here. The anisotropic morphology in InP/ZnSe h-NCs is attributed to the facet-dependent energy costs for the growth of ZnSe epilayers on different facets of InP NCs, and effective chemical means for controlling the growth rates of ZnSe on different surface planes are demonstrated. Ultimately, this article capitalizes on the controlled morphology of InP/ZnSe h-NCs to expand their photophysical characteristics from stable and pure emission to environment-sensitive one, which will facilitate their use in a variety of photonic applications.

19.
Phytomedicine ; 124: 155301, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181531

ABSTRACT

BACKGROUND: Despite the notable pharmacological potential of natural ginsenosides, their industrial application is hindered by low oral bioavailability. Recent research centers on the production of less-glycosylated minor ginsenosides. PURPOSE: This study aimed to explore the effect of a biologically synthesized ginsenoside CK-rich minor ginsenoside complex (AceCK40), on ameliorating colitis using DSS-induced colitis models in vitro and in vivo. METHODS: The ginsenoside composition of AceCK40 was determined by HPLC-ELSD and UHPLC-MS/MS analyses. In vitro colitis model was established using dextran sodium sulfate (DSS)-induced Caco-2 intestinal epithelial model. For in vivo experiments, DSS-induced severe colitis mouse model was established. RESULTS: In DSS-stimulated Caco-2 cells, AceCK40 downregulated mitogen-activated protein kinase (MAPK) activation (p < 0.05), inhibited monocyte chemoattractant protein-1 (MCP-1) production (p < 0.05), and enhanced MUC2 expression (p < 0.05), mediated via signaling pathway regulation. Daily AceCK40 administration at doses of 10 and 30 mg/kg/day was well tolerated by DSS-induced severe colitis mice. These doses led to significant alleviation of disease activity index score (> 36.0% decrease, p < 0.05), increased luminal immunoglobulin (Ig)G (> 37.6% increase, p < 0.001) and IgA (> 33.8% increase, p < 0.001), lowered interleukin (IL)-6 (> 65.7% decrease, p < 0.01) and MCP-1 (> 116.2% decrease, p < 0.05), as well as elevated serum IgA (> 51.4% increase, p < 0.001) and lowered serum IL-6 (112.3% decrease at 30 mg/kg, p < 0.001). Hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining revealed that DSS-mediated thickening of the muscular externa, extensive submucosal edema, crypt distortion, and decreased mucin droplets were significantly alleviated by AceCK40 administration. Additionally, daily administration of AceCK40 led to significant recovery of colonic tight junctions damaged by DSS through the elevation in the expression of adhesion molecules, including occludin, E-cadherin, and N-cadherin. CONCLUSION: This study presents the initial evidence elucidating the anti-colitis effects of AceCK40 and its underlying mechanism of action through sequential in vitro and in vivo systems employing DSS stimulation. Our findings provide valuable fundamental data for the utilization of AceCK40 in the development of novel anti-colitis candidates.


Subject(s)
Colitis , Ginsenosides , Humans , Mice , Animals , Ginsenosides/metabolism , Caco-2 Cells , Mice, Inbred C57BL , Tandem Mass Spectrometry , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon , Immunoglobulin A/metabolism , Immunoglobulin A/pharmacology , Immunoglobulin A/therapeutic use , Dextran Sulfate/adverse effects , Disease Models, Animal , Intestinal Mucosa/metabolism
20.
RSC Adv ; 14(3): 2061-2069, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38196907

ABSTRACT

Microplastics adsorb toxic substances and act as a transport medium. When microplastics adsorbed with toxic substances accumulate in the body, the microplastics and the adsorbed toxic substances can cause serious diseases, such as cancer. This work aimed to develop a surface-enhanced Raman spectroscopy (SERS) detection method for surface-adsorbent toxic substances by forming gold nanogaps on microplastics using surface acoustic waves (SAWs). Polystyrene microparticles (PSMPs; 1 µm) and polycyclic aromatic hydrocarbons (PAHs), including pyrene, anthracene, and fluorene, were selected as microplastics and toxic substances, respectively. Gold nanoparticles (AuNPs; 50 nm) were used as a SERS agent. The Raman characteristic peaks of the PAHs adsorbed on the surface of PSMPs were detected, and the SERS intensity and logarithm of the concentrations of pyrene, anthracene, and fluorene showed a linear relationship (R2 = 0.98), and the limits of detection were 95, 168, and 195 nM, respectively. Each PAH was detected on the surface of PSMPs, which were adsorbed with toxic substances in a mixture of three PAHs, indicating that the technique can be used to elucidate mixtures of toxic substances. The proposed SERS detection method based on SAWs could sense toxic substances that were surface-adsorbed on microplastics and can be utilized to monitor or track pollutants in aquatic environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...