Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
1.
EBioMedicine ; 104: 105170, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823088

ABSTRACT

BACKGROUND: Ebola virus disease (EVD) survivors experience ocular sequelae including retinal lesions, cataracts, and vision loss. While monoclonal antibodies targeting the Ebola virus glycoprotein (EBOV-GP) have shown promise in improving prognosis, their effectiveness in mitigating ocular sequelae remains uncertain. METHODS: We developed and characterized a BSL-2-compatible immunocompetent mouse model to evaluate therapeutics targeting EBOV-GP by inoculating neonatal mice with vesicular stomatitis virus expressing EBOV-GP (VSV-EBOV). To examine the impact of anti-EBOV-GP antibody treatment on acute retinitis and ocular sequelae, VSV-EBOV-infected mice were treated with polyclonal antibodies or monoclonal antibody preparations with antibody-dependent cellular cytotoxicity (ADCC-mAb) or neutralizing activity (NEUT-mAb). FINDINGS: Treatment with all anti-EBOV-GP antibodies tested dramatically reduced viremia and improved survival. Further, all treatments reduced the incidence of cataracts. However, NEUT-mAb alone or in combination with ADCC-mAb reduced viral load in the eyes, downregulated the ocular immune and inflammatory responses, and minimized retinal damage more effectively. INTERPRETATION: Anti-EBOV-GP antibodies can improve survival among EVD patients, but improved therapeutics are needed to reduce life altering sequelae. This animal model offers a new platform to examine the acute and long-term effect of the virus in the eye and the relative impact of therapeutic candidates targeting EBOV-GP. Results indicate that even antibodies that improve systemic viral clearance and survival can differ in their capacity to reduce acute ocular inflammation, and long-term retinal pathology and corneal degeneration. FUNDING: This study was partly supported by Postgraduate Research Fellowship Awards from ORISE through an interagency agreement between the US DOE and the US FDA.

2.
Am J Epidemiol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825336

ABSTRACT

BACKGROUND: Unmeasured confounding is often raised as a source of potential bias during the design of non-randomized studies but quantifying such concerns is challenging. METHODS: We developed a simulation-based approach to assess the potential impact of unmeasured confounding during the study design stage. The approach involved generation of hypothetical individual-level cohorts using realistic parameters including a binary treatment (prevalence 25%), a time-to-event outcome (incidence 5%), 13 measured covariates, a binary unmeasured confounder (u1, 10%), and a binary measured 'proxy' variable (p1) correlated with u1. Strength of unmeasured confounding and correlations between u1 and p1 were varied in simulation scenarios. Treatment effects were estimated with, a) no adjustment, b) adjustment for measured confounders (Level 1), c) adjustment for measured confounders and their proxy (Level 2). We computed absolute standardized mean differences in u1 and p1 and relative bias with each level of adjustment. RESULTS: Across all scenarios, Level 2 adjustment led to improvement in balance of u1, but this improvement was highly dependent on the correlation between u1 and p1. Level 2 adjustments also had lower relative bias than Level 1 adjustments (in strong u1 scenarios: relative bias of 9.2%, 12.2%, 13.5% at correlations 0.7, 0.5, and 0.3, respectively versus 16.4%, 15.8%, 15.0% for Level 1, respectively). CONCLUSION: An approach using simulated individual-level data was useful to explicitly convey the potential for bias due to unmeasured confounding while designing non-randomized studies and can be helpful in informing design choices.

3.
Anticancer Res ; 44(6): 2459-2470, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821592

ABSTRACT

BACKGROUND/AIM: Gastric cancer, with its high global incidence and mortality rates, poses a significant challenge due to the rapid decline in patient survival upon metastasis. Understanding and combating metastasis are crucial in improving outcomes. The metastasis suppressor gene CD82 has demonstrated efficacy in inhibiting metastasis across various carcinomas but is frequently down-regulated. However, its role and regulatory mechanisms in gastric cancer remain elusive. MATERIALS AND METHODS: Utilizing public data, we assessed patient survival in relation to CD82 expression. CD82 expression in gastric cancer cell lines was evaluated via western blotting, and its impact on cell mobility was assessed through wound healing and Transwell assays. The demethylation of CD82 was induced using 5-aza-deoxycytidine, while methylation levels were detected via methylation-specific PCR. RESULTS: Low CD82 expression correlated with poor prognosis in patients, and down-regulation and over-expression of CD82 significantly affected cell mobility. Treatment with 5-aza-deoxycytidine restored CD82 expression in low-expressing cell lines, highlighting its methylation-dependent regulation. CONCLUSION: CD82 serves as a pivotal regulator of cell mobility in gastric cancer by suppressing metastasis. Its expression is attenuated in gastric cancer cells through promoter hypermethylation.


Subject(s)
Cell Movement , DNA Methylation , Gene Expression Regulation, Neoplastic , Kangai-1 Protein , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Kangai-1 Protein/genetics , Kangai-1 Protein/metabolism , Cell Line, Tumor , Cell Movement/genetics , Promoter Regions, Genetic , Prognosis , Decitabine/pharmacology , Neoplasm Metastasis , Down-Regulation , Genes, Tumor Suppressor
4.
Nat Commun ; 15(1): 4161, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755122

ABSTRACT

Lipid biosynthesis in the pathogen Mycobacterium tuberculosis depends on biotin for posttranslational modification of key enzymes. However, the mycobacterial biotin synthetic pathway is not fully understood. Here, we show that rv1590, a gene of previously unknown function, is required by M. tuberculosis to synthesize biotin. Chemical-generic interaction experiments mapped the function of rv1590 to the conversion of dethiobiotin to biotin, which is catalyzed by biotin synthases (BioB). Biochemical studies confirmed that in contrast to BioB of Escherichia coli, BioB of M. tuberculosis requires Rv1590 (which we named "biotin synthase auxiliary protein" or BsaP), for activity. We found homologs of bsaP associated with bioB in many actinobacterial genomes, and confirmed that BioB of Mycobacterium smegmatis also requires BsaP. Structural comparisons of BsaP-associated biotin synthases with BsaP-independent biotin synthases suggest that the need for BsaP is determined by the [2Fe-2S] cluster that inserts sulfur into dethiobiotin. Our findings open new opportunities to seek BioB inhibitors to treat infections with M. tuberculosis and other pathogens.


Subject(s)
Bacterial Proteins , Biotin , Mycobacterium tuberculosis , Biotin/metabolism , Biotin/analogs & derivatives , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Sulfurtransferases/metabolism , Sulfurtransferases/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/enzymology , Escherichia coli/metabolism , Escherichia coli/genetics
5.
Bone Res ; 12(1): 29, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744829

ABSTRACT

Mature osteoclasts degrade bone matrix by exocytosis of active proteases from secretory lysosomes through a ruffled border. However, the molecular mechanisms underlying lysosomal trafficking and secretion in osteoclasts remain largely unknown. Here, we show with GeneChip analysis that RUN and FYVE domain-containing protein 4 (RUFY4) is strongly upregulated during osteoclastogenesis. Mice lacking Rufy4 exhibited a high trabecular bone mass phenotype with abnormalities in osteoclast function in vivo. Furthermore, deleting Rufy4 did not affect osteoclast differentiation, but inhibited bone-resorbing activity due to disruption in the acidic maturation of secondary lysosomes, their trafficking to the membrane, and their secretion of cathepsin K into the extracellular space. Mechanistically, RUFY4 promotes late endosome-lysosome fusion by acting as an adaptor protein between Rab7 on late endosomes and LAMP2 on primary lysosomes. Consequently, Rufy4-deficient mice were highly protected from lipopolysaccharide- and ovariectomy-induced bone loss. Thus, RUFY4 plays as a new regulator in osteoclast activity by mediating endo-lysosomal trafficking and have a potential to be specific target for therapies against bone-loss diseases such as osteoporosis.


Subject(s)
Endosomes , Lysosomes , Osteoclasts , Animals , Osteoclasts/metabolism , Lysosomes/metabolism , Endosomes/metabolism , Mice , Mice, Knockout , Bone Resorption/metabolism , Bone Resorption/pathology , Bone Resorption/genetics , Protein Transport , Mice, Inbred C57BL , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Cell Differentiation , Gene Deletion , Cathepsin K/metabolism , Cathepsin K/genetics , Female , rab7 GTP-Binding Proteins
6.
Clin Epidemiol ; 16: 329-343, 2024.
Article in English | MEDLINE | ID: mdl-38798915

ABSTRACT

Objective: Partially observed confounder data pose challenges to the statistical analysis of electronic health records (EHR) and systematic assessments of potentially underlying missingness mechanisms are lacking. We aimed to provide a principled approach to empirically characterize missing data processes and investigate performance of analytic methods. Methods: Three empirical sub-cohorts of diabetic SGLT2 or DPP4-inhibitor initiators with complete information on HbA1c, BMI and smoking as confounders of interest (COI) formed the basis of data simulation under a plasmode framework. A true null treatment effect, including the COI in the outcome generation model, and four missingness mechanisms for the COI were simulated: completely at random (MCAR), at random (MAR), and two not at random (MNAR) mechanisms, where missingness was dependent on an unmeasured confounder and on the value of the COI itself. We evaluated the ability of three groups of diagnostics to differentiate between mechanisms: 1)-differences in characteristics between patients with or without the observed COI (using averaged standardized mean differences [ASMD]), 2)-predictive ability of the missingness indicator based on observed covariates, and 3)-association of the missingness indicator with the outcome. We then compared analytic methods including "complete case", inverse probability weighting, single and multiple imputation in their ability to recover true treatment effects. Results: The diagnostics successfully identified characteristic patterns of simulated missingness mechanisms. For MAR, but not MCAR, the patient characteristics showed substantial differences (median ASMD 0.20 vs 0.05) and consequently, discrimination of the prediction models for missingness was also higher (0.59 vs 0.50). For MNAR, but not MAR or MCAR, missingness was significantly associated with the outcome even in models adjusting for other observed covariates. Comparing analytic methods, multiple imputation using a random forest algorithm resulted in the lowest root-mean-squared-error. Conclusion: Principled diagnostics provided reliable insights into missingness mechanisms. When assumptions allow, multiple imputation with nonparametric models could help reduce bias.

7.
Biomed Eng Lett ; 14(3): 367-392, 2024 May.
Article in English | MEDLINE | ID: mdl-38645592

ABSTRACT

Bioelectric medicine (BEM) refers to the use of electrical signals to modulate the electrical activity of cells and tissues in the body for therapeutic purposes. In this review, we particularly focused on the microcurrent stimulation (MCS), because, this can take place at the cellular level with sub-sensory application unlike other stimuli. These extremely low-level currents mimic the body's natural electrical activity and are believed to promote various physiological processes. To date, MCS has limited use in the field of BEM with applications in several therapeutic purposes. However, recent studies provide hopeful signs that MCS is more scalable and widely applicable than what has been used so far. Therefore, this review delves into the landscape of MCS, shedding light on the multifaceted applications and untapped potential of MCS in the realm of healthcare. Particularly, we summarized the hierarchical mediation from cell to whole body responses by MCS including its physiological applications. Our final objective of this review is to contribute to the growing body of literature that unveils the captivating potential of BEM, with MCS poised at the intersection of technological innovation and the intricacies of the human body.

8.
Front Microbiol ; 15: 1383976, 2024.
Article in English | MEDLINE | ID: mdl-38666258

ABSTRACT

Background: It is essential to consider a practical antibody test to successfully implement marker vaccines and validate vaccination efficacy against classical swine fever virus (CSFV). The test should include a serological antibody assay, combined with a tool for differentiating infected from vaccinated animals (DIVA). The immunochromatographic test strip (ICS) has been exclusively designed for detecting CSFV E2 antibodies while lacking in detecting Erns antibodies, which can be employed and satisfy DIVA strategy. This study developed a novel ICS for detecting CSFV E2/Erns dual-antibody. The effectiveness of ICS in evaluating the DIVA capability of two novel chimeric pestivirus vaccine candidates was assessed. Methods: Recombinant E2 or Erns protein was transiently expressed in the plant benthamiana using Agrobacterium tumefaciens. ICS was subsequently assembled, and goat anti-rabbit IgG and recombinant CSFV E2 or Erns protein were plated onto the nitrocellulose membrane as control and test lines, respectively. The sensitivity and specificity of ICS were evaluated using sera with different neutralizing antibody titers or positive for antibodies against CSFV and other pestiviruses. The coincidence rates for detecting E2 and Erns antibodies between ICS and commercial enzyme-linked immunosorbent assay (ELISA) kits were also computed. ICS performance for DIVA capability was evaluated using sera from pigs vaccinated with conventional vaccine or chimeric vaccine candidates. Results: E2 and Erns proteins were successfully expressed in N. benthamiana-produced recombinant proteins. ICS demonstrated high sensitivity in identifying CSFV E2 and Erns antibodies, even at the low neutralizing antibody titers. No cross-reactivity with antibodies from other pestiviruses was confirmed using ICS. There were high agreement rates of 93.0 and 96.5% between ICS and two commercial ELISA kits for E2 antibody testing. ICS also achieved strong coincidence rates of 92.9 and 89.3% with two ELISA kits for Erns antibody detection. ICS confirmed the absence of CSFV Erns-specific antibodies in sera from pigs vaccinated with chimeric vaccine candidates. Conclusion: E2 and Erns proteins derived from the plant showed great potential and can be used to engineer a CSFV E2/Erns dual-antibody ICS. The ICS was also highly sensitive and specific for detecting CSFV E2 and Erns antibodies. Significantly, ICS can fulfill the DIVA concept by incorporating chimeric vaccine candidates.

9.
Nat Commun ; 15(1): 2983, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582860

ABSTRACT

Akkermansia muciniphila has received great attention because of its beneficial roles in gut health by regulating gut immunity, promoting intestinal epithelial development, and improving barrier integrity. However, A. muciniphila-derived functional molecules regulating gut health are not well understood. Microbiome-secreted proteins act as key arbitrators of host-microbiome crosstalk through interactions with host cells in the gut and are important for understanding host-microbiome relationships. Herein, we report the biological function of Amuc_1409, a previously uncharacterised A. muciniphila-secreted protein. Amuc_1409 increased intestinal stem cell (ISC) proliferation and regeneration in ex vivo intestinal organoids and in vivo models of radiation- or chemotherapeutic drug-induced intestinal injury and natural aging with male mice. Mechanistically, Amuc_1409 promoted E-cadherin/ß-catenin complex dissociation via interaction with E-cadherin, resulting in the activation of Wnt/ß-catenin signaling. Our results demonstrate that Amuc_1409 plays a crucial role in intestinal homeostasis by regulating ISC activity in an E-cadherin-dependent manner and is a promising biomolecule for improving and maintaining gut health.


Subject(s)
Verrucomicrobia , beta Catenin , Male , Mice , Animals , beta Catenin/metabolism , Verrucomicrobia/metabolism , Intestines , Cadherins/metabolism , Akkermansia
10.
Prev Nutr Food Sci ; 29(1): 40-46, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38576882

ABSTRACT

This study investigated the protective effects of cereal grains on alcohol-induced hepatocyte damage. Cereal grains were extracted with methanol, and their radical scavenging properties and total phenolic contents were examined. Black rice extract exhibited the highest total polyphenol content and radical scavenging capacity. Treatment with sorghum extract increased the viability of cells exposed to alcohol by up to 81.6%. All cereal grain extracts decreased reactive oxygen species and malondialdehyde production and glutathione depletion in HepG2 cells exposed to ethanol. In particular, black rice and sorghum extracts exhibited greater antioxidant effects than other cereal grains. Treatment with black rice extract increased the levels of alanine aminotransferase and aspartate aminotransferase of alcohol-exposed cells to control levels. Overall, black rice extract showed a greater protective effect compared with other cereal grains against alcohol exposure in HepG2 cells and could improve alcohol-induced liver problems.

11.
J Agric Food Chem ; 72(14): 7870-7881, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38562057

ABSTRACT

This study compares the inhibitory effects of orange peel polar fraction (OPP) and orange peel nonpolar fraction (OPNP) on trimethylamine (TMA) and trimethylamine N-oxide (TMAO) production in response to l-carnitine treatment in vivo and in vitro. Metabolomics is used to identify bioactive compounds. The research demonstrates that the OPP effectively regulates atherosclerosis-related markers, TMA and TMAO in plasma and urine, compared to the OPNP. Our investigation reveals that these inhibitory effects are independent of changes in gut microbiota composition. The effects are attributed to the modulation of cntA/B enzyme activity and FMO3 mRNA expression in vitro. Moreover, OPP exhibits stronger inhibitory effects on TMA production than OPNP, potentially due to its higher content of feruloylputrescine, which displays the highest inhibitory activity on the cntA/B enzyme and TMA production. These findings suggest that the OPP containing feruloylputrescine has the potential to alleviate cardiovascular diseases by modulating cntA/B and FMO3 enzymes without directly influencing gut microbiota composition.


Subject(s)
Citrus sinensis , Coumaric Acids , Gastrointestinal Microbiome , Putrescine/analogs & derivatives , Citrus sinensis/metabolism , Methylamines/metabolism
12.
Antioxidants (Basel) ; 13(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38671930

ABSTRACT

We comparatively evaluated the antioxidant properties of key triterpenes from Centella asiatica, including asiatic acid (AA), asiaticoside, madecassic acid, and madecassoside, in several cell types, including skin fibroblasts, macrophages, hepatocytes, and endothelial cells, under conditions promoting oxidative stress. AA conferred the highest viability on Hs68 cells exposed to ultraviolet B (UVB) irradiation. Triterpene pretreatment attenuated the UVB-induced generation of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as the UVB-induced depletion of glutathione (GSH) in skin fibroblasts. AA most potently inhibited UVB-induced MMP generation, resulting in increased intracellular collagen levels. Pretreatment with triterpenes, particularly AA, significantly improved cell viability and attenuated TBHP-induced levels of ROS, alanine aminotransferase, and aspartate aminotransferase in HepG2 cells. Triterpenes attenuated ROS levels and reduced MDA and GSH expression in EA.hy926 cells. In RAW264.7 macrophages, production of nitric oxide, tumor necrosis factor-α, and interleukin-6 (indicators of LPS-induced oxidative damage) was significantly reduced by treatment with any of the triterpenes. Statistical analyses of triterpene biological activities using principal component analysis and hierarchical clustering revealed that AA exerted the greatest overall influence and showed remarkable activity in Hs68 and HepG2 cells.

13.
Antioxidants (Basel) ; 13(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38539853

ABSTRACT

Blackberries have gained considerable attention due to their high antioxidant content and potential health benefits. This study compared the metabolite profiles of six blackberry cultivars and investigated their biological activities. The metabolites extracted from blackberries were analyzed using metabolomics, and their biological activities and mechanisms were confirmed using in vitro models and network pharmacology. Among the cultivars examined, "Kiowa" ripe berries exhibited the highest antioxidant and anti-inflammatory activities. These effects were primarily attributed to the accumulation of flavonoids (quercitrin and luteolin) and anthocyanin (cyanidin 3-O-glucoside) in the phenylpropanoid pathway. Furthermore, our research identified 13 blackberry metabolites that interacted with 31 genes, including AKT1, CASP3, JUN, MAPK8, NOS3, NQO1, and HMOX1 which play roles in reducing oxidative stress, protecting cells from damage, and suppressing inflammation. These findings suggest that blackberry metabolites, such as quercitrin, luteolin, and cyanidin 3-O-glucoside, may exert therapeutic effects by modulating specific genes and pathways associated with antioxidant and anti-inflammatory responses. This research is promising not only for plant breeders but also for those interested in harnessing the health-promoting properties of blackberries.

14.
Am J Epidemiol ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38517025

ABSTRACT

Lasso regression is widely used for large-scale propensity score (PS) estimation in healthcare database studies. In these settings, previous work has shown that undersmoothing (overfitting) Lasso PS models can improve confounding control, but it can also cause problems of non-overlap in covariate distributions. It remains unclear how to select the degree of undersmoothing when fitting large-scale Lasso PS models to improve confounding control while avoiding issues that can result from reduced covariate overlap. Here, we used simulations to evaluate the performance of using collaborative-controlled targeted learning to data-adaptively select the degree of undersmoothing when fitting large-scale PS models within both singly and doubly robust frameworks to reduce bias in causal estimators. Simulations showed that collaborative learning can data-adaptively select the degree of undersmoothing to reduce bias in estimated treatment effects. Results further showed that when fitting undersmoothed Lasso PS-models, the use of cross-fitting was important for avoiding non-overlap in covariate distributions and reducing bias in causal estimates.

15.
Food Chem ; 445: 138761, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38367561

ABSTRACT

The silkworm (Bombyx mori) has long been valued food and feed in East Asia for its abundant nutritional and medicinal attributes, conversely, it can elicit allergic responses in susceptible individuals. Therefore, the development of silkworm detection method is required to avert allergenic incidents. In this study, two methodologies, tandem mass spectrometry (LC-MS/MS) and real-time PCR, were developed to achieve effective silkworm detection. These methods exhibited exceptional sensitivity in identifying silkworm presence in processed foods. Furthermore, model cookies spiked with silkworm were used to validate the sensitivities of LC-MS/MS (0.0005%) and real-time PCR (0.001%). Overall, these techniques were useful for trace silkworm detection in food products; therefore, they may help prevent allergic reactions. To the best of our knowledge, this study represents the first comparison of LC-MS/MS and real-time PCR methods for silkworm detection, marking an important contribution to the field. Data are available from ProteomeXchange under identifier PXD042494.


Subject(s)
Bombyx , Hypersensitivity , Animals , Humans , Bombyx/genetics , Bombyx/chemistry , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Chromatography, Liquid , Real-Time Polymerase Chain Reaction , Allergens/genetics
16.
Hortic Res ; 11(2): uhad271, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38371635

ABSTRACT

Sugars are the main drivers of strawberry sweetness, and understanding their genetic control is of critical importance for breeding. Large-scale genome-wide association studies were performed in two populations totaling 3399 individuals evaluated for soluble solids content (SSC) and fruit yield. Two stable quantitative trait loci (QTL) on chromosome 3B and 6A for SSC were identified. Favorable haplotypes at both QTL for SSC decreased yield, though optimal allelic combinations were identified with reduced impacts on yield. Metabolites in the starch and sucrose metabolism pathway were characterized and quantified for 23 contrasting genotypes in leaves, white fruit, and red fruit. Variations in sucrose concentrations/efflux indicated genetic variation underlying sucrose accumulation and transportation during fruit ripening. Integration of genome-wide association studies and expression quantitative locus mapping identified starch synthase 4 (FxaC_10g00830) and sugar transporter 2-like candidate genes (FxaC_21g51570) within the respective QTL intervals. These results will enable immediate applications in genomics-assisted breeding for flavor and further study of candidate genes underlying genetic variation of sugar accumulation in strawberry fruit.

18.
JAMIA Open ; 7(1): ooae008, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38304248

ABSTRACT

Objectives: Partially observed confounder data pose a major challenge in statistical analyses aimed to inform causal inference using electronic health records (EHRs). While analytic approaches such as imputation are available, assumptions on underlying missingness patterns and mechanisms must be verified. We aimed to develop a toolkit to streamline missing data diagnostics to guide choice of analytic approaches based on meeting necessary assumptions. Materials and methods: We developed the smdi (structural missing data investigations) R package based on results of a previous simulation study which considered structural assumptions of common missing data mechanisms in EHR. Results: smdi enables users to run principled missing data investigations on partially observed confounders and implement functions to visualize, describe, and infer potential missingness patterns and mechanisms based on observed data. Conclusions: The smdi R package is freely available on CRAN and can provide valuable insights into underlying missingness patterns and mechanisms and thereby help improve the robustness of real-world evidence studies.

19.
Nat Commun ; 15(1): 1024, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310093

ABSTRACT

Osteoarthritis (OA) is a progressive and irreversible degenerative joint disease that is characterized by cartilage destruction, osteophyte formation, subchondral bone remodeling, and synovitis. Despite affecting millions of patients, effective and safe disease-modifying osteoarthritis drugs are lacking. Here we reveal an unexpected role for the small molecule 5-aminosalicylic acid (5-ASA), which is used as an anti-inflammatory drug in ulcerative colitis. We show that 5-ASA competes with extracellular-matrix collagen-II to bind to osteoclast-associated receptor (OSCAR) on chondrocytes. Intra-articular 5-ASA injections ameliorate OA generated by surgery-induced medial-meniscus destabilization in male mice. Significantly, this effect is also observed when 5-ASA was administered well after OA onset. Moreover, mice with DMM-induced OA that are treated with 5-ASA at weeks 8-11 and sacrificed at week 12 have thicker cartilage than untreated mice that were sacrificed at week 8. Mechanistically, 5-ASA reverses OSCAR-mediated transcriptional repression of PPARγ in articular chondrocytes, thereby suppressing COX-2-related inflammation. It also improves chondrogenesis, strongly downregulates ECM catabolism, and promotes ECM anabolism. Our results suggest that 5-ASA could serve as a DMOAD.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Male , Animals , Mice , Mesalamine/pharmacology , Mesalamine/therapeutic use , PPAR gamma/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Disease Models, Animal
20.
J Med Food ; 27(3): 222-230, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38190487

ABSTRACT

Skeletal muscles are important for body movement, postural maintenance, and energy metabolism. Muscle atrophy is caused by various factors, including lack of exercise, age, genetics, and malnutrition, leading to the loss of muscle mass. The Akt/FoxO signaling pathway plays a key role in the regulation of muscle protein synthesis and degradation. Whole wheat contains functional ingredients that may indirectly contribute to muscle health and function and can help prevent or slow the progression of muscle atrophy. In this study, the protective effects of three wheat cultivars (Seodun, Ol, and Shinmichal 1) against hydrogen peroxide-induced muscle atrophy in C2C12 cells were investigated. We found that whole-wheat treatment reduced reactive oxygen species production, prevented glutathione depletion, and increased myotube diameter, thereby reducing muscle atrophy by activating myoblast differentiation. Generally, "Shinmichal 1" exhibited the highest activation of the Akt/FoxO signaling pathway. In contrast, "Seodun" showed similar or slightly higher activities than those of the H2O2-treated only group. In conclusion, whole wheat exerts a protective effect against muscle atrophy by activating the Akt/FoxO signaling pathway. This study indicates that whole wheat may help prevent muscle atrophy.


Subject(s)
Proto-Oncogene Proteins c-akt , Triticum , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Triticum/metabolism , Hydrogen Peroxide/adverse effects , Signal Transduction , Muscular Atrophy/etiology , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal
SELECTION OF CITATIONS
SEARCH DETAIL
...