Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Open Bio ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923323

ABSTRACT

Mevalonate kinase is a key regulator of the mevalonate pathway, subject to feedback inhibition by the downstream metabolite farnesyl pyrophosphate. In this study, we validated the hypothesis that monophosphonate compounds mimicking farnesyl pyrophosphate can inhibit mevalonate kinase. Exploring compounds originally synthesized as allosteric inhibitors of farnesyl pyrophosphate synthase, we discovered mevalonate kinase inhibitors with nanomolar activity. Kinetic characterization of the two most potent inhibitors demonstrated Ki values of 3.1 and 22 nm. Structural comparison suggested features of these inhibitors likely responsible for their potency. Our findings introduce the first class of nanomolar inhibitors of human mevalonate kinase, opening avenues for future research. These compounds might prove useful as molecular tools to study mevalonate pathway regulation and evaluate mevalonate kinase as a potential therapeutic target.

2.
J Med Chem ; 66(23): 15776-15800, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37982711

ABSTRACT

Novel C6-substituted pyrazolo[3,4-d]pyrimidine- and C2-substituted purine-based bisphosphonate (C6-PyraP-BP and C2-Pur-BP, respectively) inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS) were designed and evaluated for their ability to block the proliferation of multiple myeloma (MM), pancreatic ductal adenocarcinoma (PDAC), and colorectal cancer (CRC) cells. Pyrazolo[3,4-d]pyrimidine analogs were identified that induce selective intracellular target engagement leading to apoptosis and downregulate the prenylation of Rap-1A in MM, PDAC, and CRC cells. The C6-PyraP-BP inhibitor RB-07-16 was found to exhibit antitumor efficacy in xenograft mouse models of MM and PDAC, significantly reducing tumor growth without substantially increasing liver enzymes or causing significant histopathologic damage, usually associated with hepatotoxicity. RB-07-16 is a metabolically stable compound in cross-species liver microsomes, does not inhibit key CYP 450 enzymes, and exhibits good systemic circulation in rat. Collectively, the current studies provide encouraging support for further optimization of the pyrazolo[3,4-d]pyrimidine-based GGPPS inhibitors as potential human therapeutics for various cancers.


Subject(s)
Carcinoma, Pancreatic Ductal , Colorectal Neoplasms , Multiple Myeloma , Pancreatic Neoplasms , Humans , Mice , Rats , Animals , Geranylgeranyl-Diphosphate Geranylgeranyltransferase , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Pancreatic Neoplasms/pathology , Apoptosis , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Colorectal Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Xenograft Model Antitumor Assays
3.
J Med Chem ; 65(3): 2471-2496, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35077178

ABSTRACT

Novel analogues of C-2-substituted thienopyrimidine-based bisphosphonates (C2-ThP-BPs) are described that are potent inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS). Members of this class of compounds induce target-selective apoptosis of multiple myeloma (MM) cells and exhibit antimyeloma activity in vivo. A key structural element of these inhibitors is a linker moiety that connects their (((2-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methylene)bisphosphonic acid core to various side chains. The structural diversity of this linker moiety, as well as the side chains attached to it, was investigated and found to significantly impact the toxicity of these compounds in MM cells. The most potent inhibitor identified was evaluated in mouse and rat for liver toxicity and systemic exposure, respectively, providing further optimism for the potential value of such compounds as human therapeutics.


Subject(s)
Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/antagonists & inhibitors , Multiple Myeloma/drug therapy , Pyrimidines/therapeutic use , Thiophenes/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/toxicity , Bone Marrow Cells/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/toxicity , Female , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Humans , Liver/drug effects , Male , Mice, Inbred C57BL , Molecular Structure , Protein Binding , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Pyrimidines/toxicity , Rats , Saccharomyces cerevisiae/enzymology , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/metabolism , Thiophenes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...