Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38730876

ABSTRACT

Amorphous thin films can be applied to increase the anti-corrosion ability of critical components. Atomized FeCrNiMoCSiB powders were hot-pressed into a disc target for R. F. magnetron sputtering on a 316L substrate to upgrade its corrosion resistance. The XRD spectrum confirmed that the film deposited by R. F. magnetron sputtering was amorphous. The corrosion resistance of the amorphous film was evaluated in a 1 M HCl solution with potentiodynamic polarization tests, and the results were contrasted with those of a high-velocity oxy-fuel (HVOF) coating and 316L, IN 600, and C 276 alloys. The results indicated that the film hardness and elastic modulus, as measured using a nanoindenter, were 11.1 and 182 GPa, respectively. The principal stresses in two normal directions of the amorphous film were about 60 MPa and in tension. The corrosion resistance of the amorphous film was much greater than that of the other samples, which showed a broad passivation region, even in a 1 M HCl solution. Although the amorphous film showed high corrosion resistance, the original pinholes in the film were weak sites to initiate corrosion pits. After polarization tests, large, deep trenches were seen in the corroded 316L substrate; numerous fine patches in the IN 600 alloy and grain boundary corrosion in the C276 alloy were observed.

2.
Materials (Basel) ; 14(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34947412

ABSTRACT

In this study, Fe40Cr19Mo18C15B8 amorphous coatings were prepared using high velocity oxygen fuel (HVOF) technology. Different temperatures were used in the heat treatment (600 °C, 650 °C, and 700 °C) and the annealed coatings were analyzed by DSC, SEM, TEM, and XRD. XRD and DSC results showed that the coating started to form a crystalline structure after annealing at 650 °C. From the SEM observation, it can be found that when the annealing temperature of the Fe-based amorphous alloy coating reached 700 °C, the surface morphology of the coating became relatively flat. TEM observation showed that when the annealing temperature of the Fe-based amorphous alloy coating was 700 °C, crystal grains in the coating recrystallized with a grain size of 5-20 nm. SAED analysis showed that the precipitated carbide phase was M23C6 phase with different crystal orientations (M = Fe, Cr, Mo). Finally, the corrosion polarization curve showed that the corrosion current density of the coating after annealing only increased by 9.13 µA/cm2, which indicated that the coating after annealing treatment still had excellent corrosion resistance. It also proved that the Fe-based amorphous alloy coating can be used in high-temperature environments. XPS analysis showed that after annealing FeO and Fe2O3 oxide components increased, and the formation of a large number of crystals in the coating resulted in a decrease in corrosion resistance.

3.
Materials (Basel) ; 9(12)2016 Nov 24.
Article in English | MEDLINE | ID: mdl-28774076

ABSTRACT

We propose a simple and low-cost process for the preparation of porous Ti foams through a sponge replication method using single-step air sintering at various temperatures. In this study, the apatite-forming ability of air-sintered Ti samples after 21 days of immersion in simulated body fluid (SBF) was investigated. The microstructures of the prepared Ca-P deposits were examined by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR) spectroscopy, and cross-sectional transmission electron microscopy (TEM). In contrast to the control sample sintered in vacuum, which was found to have the simple hexagonal α-Ti phase, the air-sintered samples contained only the rutile phase. High intensities of XRD peaks for rutile TiO2 were obtained with samples sintered at 1000 °C. Moreover, the air-sintered Ti samples had a greater apatite-forming ability than that of the Ti sample sintered in vacuum. Ti samples sintered at 900 and 1000 °C had large aggregated spheroidal particles on their surfaces after immersion in SBF for 21 days. Combined XRD, energy-dispersive X-ray spectroscopy, FTIR spectroscopy, and TEM results suggest that the calcium phosphate deposited on the rutile TiO2 surfaces consist of carbonated calcium-deficient hydroxyapatite instead of octacalcium phosphate.

SELECTION OF CITATIONS
SEARCH DETAIL
...