Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(24): 21514-21521, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360428

ABSTRACT

Highly crystalline double-walled boron nitride nanotubes (DWBNNTs ∼60%) were synthesized from ammonia borane (AB; H3B-NH3) precursors using a high-temperature thermal plasma method. The differences between the synthesized BNNTs using the hexagonal boron nitride (h-BN) precursor and AB precursor were compared using various techniques such as thermogravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and in situ optical emission spectroscopy (OES). The synthesized BNNTs were longer and had fewer walls when the AB precursor was used than when the conventional method was used (with the h-BN precursor). The production rate significantly improved from ∼20 g/h (h-BN precursor) to ∼50 g/h (AB precursor), and the content of amorphous boron impurities was significantly reduced, implying a self-assembly mechanism of BN radicals rather than the conventional mechanism involving boron nanoballs. Through this mechanism, the BNNT growth, which was accompanied by an increased length, a decreased diameter, and a high growth rate, could be understood. The findings were also supported by in situ OES data. Considering the increased production yield, this synthesis method using AB precursors is expected to make an innovative contribution to the commercialization of BNNTs.

2.
Nano Converg ; 9(1): 20, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35552898

ABSTRACT

Highly crystalline and few-walled boron nitride nanotubes (BNNTs) had been synthesized by laser ablation using only ammonia borane as a precursor. As a molecular precursor, ammonia borane supplied both B and N atoms with a ratio of 1:1, and BNNTs were formed via the homogeneous nucleation of BN radicals, not the growth from boron nano-droplets, which is a generally accepted growth mechanism of the laser-grown BNNTs. Owing to the absence of amorphous boron impurities, the van der Waals interaction among BNNTs became effective and thus a BNNT fibers was formed spontaneously during the BNNT synthesis. The BNNT growth and the subsequent fiber formation are found to occur only at high pressures of a surrounding gas. The mechanism behind the critical role of pressure was elucidated from the perspective of reaction kinetics and thermal fluid behaviors. A polarized Raman study confirmed that the BNNT fiber formed exhibits a good alignment of BNNTs, which implies great potential for continuous production of high-quality BNNT fibers for various applications.

3.
Sci Rep ; 10(1): 7416, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32366898

ABSTRACT

Research interest in boron nitride nanotubes (BNNTs) has increased after the recent success of large-scale BNNT syntheses using high-temperature-pressure laser ablation or high-temperature plasma methods. Nonetheless, there are limits to the application and commercialization of these materials because of the difficulties associated with their fine structural control. Herein, the growth kinetics of BNNTs were systemically studied for this purpose. The growth pressure of the nitrogen feed gas was varied while the growth temperature remained constant, which was confirmed by black body radiation measurements and calculations based on a heat loss model. Changing from the diffusion-limited regime to the supply-limited regime of growth kinetics based on the optimized BNNT synthesis condition afforded the control of the number of BNNT walls. The total amount of BNNTs possessing single and double walls was over 70%, and the BNNT surface area increased to 278.2 m2/g corresponding to small wall numbers and diameters. Taking advantage of the large surface area and high-temperature durability of the material, BNNTs utilized as a recyclable adsorbent for water purification. The efficiency of the BNNTs for capturing methylene blue particles in water was approximately 94%, even after three repetition cycles, showing the potential of the material for application in the filter industry.

4.
Sci Rep ; 9(1): 20170, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31882924

ABSTRACT

Nitrogen (N)-doped nanostructured carbons have been actively examined as promising alternatives for precious-metal catalysts in various electrochemical energy generation systems. Herein, an effective approach for synthesizing N-doped single-walled carbon nanohorns (SWNHs) with highly electrocatalytic active sites via controlled oxidation followed by N2 plasma is presented. Nanosized holes were created on the conical tips and sidewalls of SWNHs under mild oxidation, and subsequently, the edges of the holes were easily decorated with N atoms. The N atoms were present preferentially in a pyridinic configuration along the edges of the nanosized holes without significant structural change of the SWNHs. The enriched edges decorated with the pyridinic-N atoms at the atomic scale increased the number of active sites for the oxygen reduction reaction, and the inherent spherical three-dimensional feature of the SWNHs provided good electrical conductivity and excellent mass transport. We demonstrated an effective method for promoting the electrocatalytic active sites within N-doped SWNHs by combining defect engineering with the preferential formation of N atoms having a specific configuration.

5.
Sci Rep ; 9(1): 15674, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31666654

ABSTRACT

The morphological analysis of the end of boron nitride nanotubes (BNNTs) using high-resolution transmission electron microscopy (HR-TEM) can provide valuable insight into the growth mechanism in high temperature pressure (HTP) laser ablation where the best quality of BNNT materials can be obtained so far. Two growth modes of BNNT coexisting during the synthesis process have been proposed based on HR-TEM observation and length analysis. One is the root growth mode, in which boron nitride (BN) species formed via the surface interaction between surrounding N2 molecules and boron nanodroplets incorporate into the tubular structure. Another mode called open-end growth mode means the prolongation of tube growth from the exposed BN edge surrounding the surface of boron nanodroplets which is constructed by the heterogeneous nucleation of absorbed BN radicals from the gas plume. The statistical data, the proportions of end structures and the length of BNNTs, could be fitted to two growth modes, and the open-end growth mode is found to be especially effective in producing longer nanotubes with a higher growth rate. The scientific understanding of the growth mechanism is believed to provide the control for optimized production of BNNTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...