Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 51(2): 1509-1530, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36846955

ABSTRACT

BACKGROUND: Dual-energy (DE) chest radiography (CXR) enables the selective imaging of two relevant materials, namely, soft tissue and bone structures, to better characterize various chest pathologies (i.e., lung nodule, bony lesions, etc.) and potentially improve CXR-based diagnosis. Recently, deep-learning-based image synthesis techniques have attracted considerable attention as alternatives to existing DE methods (i.e., dual-exposure-based and sandwich-detector-based methods) because software-based bone-only and bone-suppression images in CXR could be useful. PURPOSE: The objective of this study was to develop a new framework for DE-like CXR image synthesis from single-energy computed tomography (CT) based on a cycle-consistent generative adversarial network. METHODS: The core techniques of the proposed framework are divided into three categories: (1) data configuration from the generation of pseudo CXR from single energy CT, (2) learning of the developed network architecture using pseudo CXR and pseudo-DE imaging using a single-energy CT, and (3) inference of the trained network on real single-energy CXR. We performed a visual inspection and comparative evaluation using various metrics and introduced a figure of image quality (FIQ) to consider the effects of our framework on the spatial resolution and noise in terms of a single index through various test cases. RESULTS: Our results indicate that the proposed framework is effective and exhibits potential synthetic imaging ability for two relevant materials: soft tissue and bone structures. Its effectiveness was validated, and its ability to overcome the limitations associated with DE imaging techniques (e.g., increase in exposure dose owing to the requirement of two acquisitions, and emphasis on noise characteristics) via an artificial intelligence technique was presented. CONCLUSIONS: The developed framework addresses X-ray dose issues in the field of radiation imaging and enables pseudo-DE imaging with single exposure.


Subject(s)
Artificial Intelligence , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Radiography , Tomography, X-Ray Computed/methods , Thorax/diagnostic imaging
2.
Comput Methods Programs Biomed ; 151: 151-158, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28946997

ABSTRACT

BACKGROUND AND OBJECTIVE: Digital tomosynthesis (DTS) based on filtered-backprojection (FBP) reconstruction requires a full field-of-view (FOV) scan and relatively dense projections, which results in high doses for medical imaging purposes. To overcome these difficulties, we investigated region-of-interest (ROI) or interior DTS reconstruction where the x-ray beam span covers only a small ROI containing a target area. METHODS: An iterative method based on compressed-sensing (CS) scheme was compared with the FBP-based algorithm for ROI-DTS reconstruction. We implemented both algorithms and performed a systematic simulation and experiments on body and skull phantoms. The image characteristics were evaluated and compared. RESULTS: The CS-based algorithm yielded much better reconstruction quality in ROI-DTS compared to the FBP-based algorithm, preserving superior image homogeneity, edge sharpening, and in-plane resolution. The image characteristics of the CS-reconstructed images in ROI-DTS were not significantly different from those in full-FOV DTS. The measured CNR value of the CS-reconstructed ROI-DTS image was about 12.3, about 1.9 times larger than that of the FBP-reconstructed ROI-DTS image. CONCLUSIONS: ROI-DTS images of substantially high accuracy were obtained using the CS-based algorithm and at reduced imaging doses and less computational cost, compared to typical full-FOV DTS images. We expect that the proposed method will be useful for the development of new DTS systems.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Humans , Phantoms, Imaging
3.
J Pharm Biomed Anal ; 39(3-4): 670-6, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-15936164

ABSTRACT

Here we report on the development and validation of a sensitive and rapid reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitative determination of propiverine in human plasma. After adding an internal standard (oxybutynin chloride) to human plasma, samples were extracted using n-hexane/ethylacetate (8:2, v/v). Compounds extracted were analyzed by reversed-phase high-performance liquid chromatography (HPLC) with multiple reaction monitoring (MRM) mode for analyte detection. This method for determination of propiverine proved accurate and reproducible, with a limit of quantitation of 0.5 ng/ml in human plasma. The standard calibration curve for propiverine was linear (r2=0.9988) over the concentration range 0.5-1000.0 ng/ml in human plasma. The intra- and inter-day precision over this concentration range was lower than 8.66% (relative standard deviation, %R.S.D.), and accuracy was between 99.46 and 109.41%, respectively. This method was successfully applied to a bioequivalence study of two propiverine hydrochloride tablet formulations (20 mg) in 24 healthy subjects after a single administration.


Subject(s)
Benzilates/analysis , Chemistry, Pharmaceutical/methods , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Area Under Curve , Benzilates/blood , Benzilates/chemistry , Calibration , Chromatography, High Pressure Liquid , Drug Industry/methods , Heparin/chemistry , Humans , Mandelic Acids/analysis , Mandelic Acids/chemistry , Mass Spectrometry , Models, Chemical , Reproducibility of Results , Tablets , Therapeutic Equivalency , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...