Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(2): e0192629, 2018.
Article in English | MEDLINE | ID: mdl-29438432

ABSTRACT

Although several studies have been performed to detect cancer using canine olfaction, none have investigated whether canine olfaction trained to the specific odor of one cancer is able to detect odor related to other unfamiliar cancers. To resolve this issue, we employed breast and colorectal cancer in vitro, and investigated whether trained dogs to odor related to metabolic waste from breast cancer are able to detect it from colorectal cancer, and vice versa. The culture liquid samples used in the cultivation of cancerous cells (4T1 and CT26) were employed as an experimental group. Two different breeds of dogs were trained for the different cancer odor each other. The dogs were then tested using a double-blind method and cross-test to determine whether they could correctly detect the experimental group, which contains the specific odor for metabolic waste of familiar or unfamiliar cancer. For two cancers, both dogs regardless of whether training or non-training showed that accuracy was over 90%, and sensitivity and specificity were over 0.9, respectively. Through these results, it was verified that the superior olfactory ability of dogs can discriminate odor for metabolic waste of cancer cells from it of benign cells, and that the specific odor for metabolic waste of breast cancer has not significant differences to it of colorectal cancer. That is, it testifies that metabolic waste between breast and colorectal cancer have the common specific odor in vitro. Accordingly, a trained dogs for detecting odor for metabolic waste of breast cancer can perceive it of colorectal cancer, and vice versa. In order to the future work, we will plan in vivo experiment for the two cancers and suggest research as to what kind of cancers have the common specific odor. Furthermore, the relationship between breast and colorectal cancer should be investigated using other research methods.


Subject(s)
Breast Neoplasms/diagnosis , Colorectal Neoplasms/diagnosis , Dogs/physiology , Odorants , Smell , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Female , Humans , Male
2.
Sci Rep ; 7(1): 18107, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259190

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

3.
Sci Rep ; 7(1): 2340, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28539609

ABSTRACT

Here, we report that the development of a brain-to-brain interface (BBI) system that enables a human user to manipulate rat movement without any previous training. In our model, the remotely-guided rats (known as ratbots) successfully navigated a T-maze via contralateral turning behaviour induced by electrical stimulation of the nigrostriatal (NS) pathway by a brain- computer interface (BCI) based on the human controller's steady-state visually evoked potentials (SSVEPs). The system allowed human participants to manipulate rat movement with an average success rate of 82.2% and at an average rat speed of approximately 1.9 m/min. The ratbots had no directional preference, showing average success rates of 81.1% and 83.3% for the left- and right-turning task, respectively. This is the first study to demonstrate the use of NS stimulation for developing a highly stable ratbot that does not require previous training, and is the first instance of a training-free BBI for rat navigation. The results of this study will facilitate the development of borderless communication between human and untrained animals, which could not only improve the understanding of animals in humans, but also allow untrained animals to more effectively provide humans with information obtained with their superior perception.


Subject(s)
Brain-Computer Interfaces , Evoked Potentials, Visual/physiology , Movement/physiology , Substantia Nigra/physiology , User-Computer Interface , Adult , Animals , Electric Stimulation , Electroencephalography , Humans , Maze Learning , Rats
4.
J Neurosci Methods ; 244: 26-32, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-24797225

ABSTRACT

BACKGROUND: For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. NEW METHOD: In this paper, we present a novel hybrid BCI system that uses near infrared spectroscopy (NIRS) and electroencephalography (EEG) systems together to achieve online self-paced motor imagery based BCI. We designed a unique sensor frame that records NIRS and EEG simultaneously for the realization of our system. Based on this hybrid system, we proposed a novel analysis method that detects the occurrence of a motor imagery with the NIRS system, and classifies its type with the EEG system. RESULTS: An online experiment demonstrated that our hybrid system had a true positive rate of about 88%, a false positive rate of 7% with an average response time of 10.36 s. COMPARISON WITH EXISTING METHOD(S): As far as we know, there is no report that explored hemodynamic brain switch for self-paced motor imagery based BCI with hybrid EEG and NIRS system. CONCLUSIONS: From our experimental results, our hybrid system showed enough reliability for using in a practical self-paced motor imagery based BCI.


Subject(s)
Brain Waves/physiology , Brain-Computer Interfaces , Brain/physiology , Hemoglobins/metabolism , Imagination/physiology , Movement , Self-Control , Adult , Brain Mapping , Electroencephalography , Humans , Male , Online Systems , Spectroscopy, Near-Infrared , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...