Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nutr Res Pract ; 7(5): 400-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24133620

ABSTRACT

Obesity may be the consequence of various environmental or genetic factors, which may be highly correlated with each other. We aimed to examine whether grandmaternal and maternal obesity and environmental risk factors are related to obesity in daughters. Daughters (n = 182) recruited from female students, their mothers (n = 147) and their grandmothers (n = 67) were included in this study. Multivariable logistic regression was used to analyze the association between the daughter's obesity and maternal, grandmaternal, and environmental factors. Maternal heights of 161-175cm (OD: 8.48, 95% CI: 3.61-19.93) and 156-160 cm (2.37, 1.14-4.91) showed positive associations with a higher height of daughter, compared to those of 149-155 cm. Mothers receiving a university or a higher education had a significant OR (3.82, 1.27-11.50) for a higher height of daughter compared to those having a low education (elementary school). Mother having the heaviest weight at current time (59-80 kg, 3.78, 1.73-8.28) and the heaviest weight at 20 years of age (51-65 kg, 3.17, 1.53-6.55) had significant associations with a higher height of daughters, compared to those having the lightest weight at the same times. There was no association between the height, weight, and BMI of daughters and the characteristics and education of her grandmothers. In conclusion, although genetic factors appear to influence the daughter's height more than environmental factors, the daughter's weight appears to be more strongly associated with individual factors than the genetic factors.

2.
J Sep Sci ; 31(15): 2820-6, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18666167

ABSTRACT

A simple and direct analysis using column-switching HPLC method was developed and validated for the quantification of active metabolites of sibutramine, N-mono-desmethyl metabolite (metabolite 1, M1) and N-di-desmethyl metabolite (metabolite 2, M2) in the serum of rats administered sibutramine HCl (5.0 mg/kg, p.o.). Rat serum was directly injected onto the precolumn without sample prepreparation step following dilution with mobile phase A, i. e., methanol-ACN-20 mM ammonium phosphate buffer (pH 6.0 with phosphoric acid) (8.3:4.5:87.2 by volume). After the endogenous serum components were eluted to waste, the system was switched and the analytes were eluted to the trap column. Active metabolites M1 and M2 were then back-flushed to the analytical column for separation with mobile phase B, i. e., methanol-ACN-20 mM ammonium phosphate buffer (pH 6.0 with phosphoric acid) (35.8:19.2:45 by volume) and detected at 223 nm. The calibration curves of active metabolites M1 and M2 were linear in the range of 0.1-1.0 microg/mL and 0.15-1.8 microg/mL. This method was fully validated and shown to be specific, accurate (10.4-10.7% error), and precise (1.97-8.79% CV). This simple and rapid analytical method using column-switching appears to be useful for the pharmacokinetic study of active metabolites (M1 and M2) of sibutramine.


Subject(s)
Cyclobutanes/blood , Administration, Oral , Animals , Calibration , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Cyclobutanes/administration & dosage , Male , Molecular Structure , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...